Institute of Information and Communication Technologies MUET, Jamshoro Department of Electrical Engineering

Proposed/Revised courses for M.E in Electrical Power Engineering Effective from 23ELP Onwards February, 2023

1 st Semester			2 nd Semester			3 rd Semester		
S #	Subject Name	CH/ Marks	S #	Subject Name	CH/ Marks	S #	Subject Name	CH/ Marks
1.	Power Quality (ELP611)	2/50	1.	Power Electronics and Motor Drives (ELP651)	2/50	1.	FACTS and HVDC (ELP705)	2/50
2.	Electrical Power Transmission and Distribution (ELP615)	2/50	2.	Power System Stability (ELP660)	2/50	2.	Power Engineering Laboratory (ELP720)	1/50
3.	Power System Operation and Control (ELP625)	2/50	3.	Advanced High Voltage Engineering (ELP670)	2/50	3.	Power System Planning and Management (ELP730)	2/50
4.	Clean Energy Technologies (ELP635)	2/50	4.	Energy Management (ELP680)	2/50	4.	Thesis (ELP799)	6
5.	Power System Analysis (ELP640)	2/50	5.	Power System Protection (ELP690)	2/50	5.	Advance Electrical Machine Design (ELP748)	2/50

Title of Subject	:	Power Quality	y (ELP611)		
Discipline	:	Electrical Power	Engineering		
Semester	:	1 st Semester		C.Hs:	02
Effective	:	23rd ELP-Batch a	nd onwards		
Marks	:	50			
Assesment	:	Sessional 10%	Mid Semester Exam	30%	Final Semster Exam 60%
Minimum Contact Hrs	:	28			

To provide adequate knowledge and develop expertise for the analysis, monitoring and control of power quality problems

Objectives

Aims

: Upon successful Completion of this course the student will be able to:

- Understand the issues concerning the power quality such as; harmonics, voltage sags, notches, swellings, surges, transients, voltage regulation & frequency regulation.
 - familiar with power quality measuring devices
 - Describe Various Equipment used for Power Monitoring.

Contents

Power Quality Concepts

Power quality evaluation Procedure, General classes of power quality problems, Transients, Long-Duration Voltage Variations, Short-Duration Voltage Variations, Voltage Imbalance,Waveform Distortion,Voltage Fluctuation, Power Frequency Variations, Power Quality Terms

Voltage Sags and Intruptions

Sources of Sags and Interruptions, Estimating Voltage Sag Performance, Fundamental Principles of Protection, Solutions at the End-User Level, Evaluating the Economics of Different Ride-Through Alternatives, Motor-Starting Sags, Utility System Fault-Clearing Issues.

Harmonics

Harmonic Distortion, Voltage versus Current Distortion, Harmonics versus, Transients, Harmonic Indexes, Harmonic Sources from Commercial Loads, Harmonic Sources from Industrial Loads, Locating Harmonic Sources, System Response Characteristics, Adverse effects of Harmonic Distortion, Interharmonics, Harmonic Distortion Evaluations, Principles for Controlling Harmonics, Harmonic Studies, Devices for Controlling Harmonic Distortion, Standards of Harmonics

Power Quality Monitoring

Monitoring Considerations, Historical Perspective of Power Quality Measuring Instruments Power Quality Measurement Equipment, Assessment of Power Quality Measurement Data, Power Quality Monitoring Standards

Cost of Poor Power Quality

	Exploring power quality cost, Studies on cost of	of poor power quality, p	ower quality solutions				
Books :							
Recommended							
(Latest	Hand book of power quality	A	Angelo Baggini				
available	Power quality		C.Shankaran				
editions)	Power system quality assessment						
			N.R. Watson				
			S.Chen				
Approval: :	Board of Studies, Deptt. of Electrical Engg. Board of Faculty:	Res. No. 2.2 Res. No. 20.3	Dated: 14-10-2022 Dated: 22-02-2023				
	Advanced Studies and Research Board	Res. No. 191.13 (a)	Dated: 07-03-2023				
	Academic Council	Res. No.	Dated:				

Title of Subject	:	Electrical Power Transmission and Distribution (ELP615)				
Discipline	:	Electrical Power Engineering				
Semester	:	1 st Semester C.Hs: 02				
Effective	:	23 rd ELP-Batch and onwards				
Marks	:	50				
Assesment	:	Sessional 10% Mid Semester Exam 30% Final Semster Exam 60%				
Minimum Contact Hrs	:	28				

Aims	To provide adequate knowledge and understanding of Electrical Power Transmission System its types, design analysis and performance as a part of electric network. This course also gives clear									
	understanding of Plann	ing, design and operation	of Electrical power	distribution system.						
Objectives	Upon successful Completion of this course the student will be able to:									
	Understand the various concepts of transmission systemEvaluate line parameters such as resistance, inductance and capacitance for single p									
		tional features of under	ground cable, their	types, ratings and their						
	application. Understand the techniques in planning and automation of distribution systems.									
Contents	Operate optimally the c	listribution networks								
	Introduction									
	Transmission system planning, Complex power in balanced three phase transmission Power flow in transmission lines.									
		s of Transmission system								
				eady state power limit and ne, A, B, C & D constants.						
		inal T circuits. Analysis		ion lines, Line and load of overhead lines.						
	Undergorund Cables									
	Types of underground cables, Cable installation techniques, Electric stress, dielectric constant, charging current, insulation resistance, skin effect and proximity effect, current carrying capcity of cables.									
	Distribution System Planning									
	system planning, plann		plications, distribution	tors affecting distribution on automation and control,						
	Distribution Substatio	n								
	Distribution substation, service area. Square	Substation bus schemes.	area. Distribution	n substation, limitation of transformer, distribution ups						
	Primary distribution fe for Radial feeders, Eco	nomic design of secondar	ltage level and loadi y lines, voltage fluctu	Systems ng, Design considerations uation. Voltage regulation,						
	·	tage control, line drop co	-							
Books Recommended	Electrical Power Trans Elements of Power syst	mission System Engineeri tem	ing Turan Gonen Stevensen Jr.							
(Latest available editions)	Power system Analysis		Ashfaque Huss	ain						
Approval:	Board of Studies, Dept	t. of Electrical Engg.	Res. No. 2.2	Dated: 14-10-2022						
	Board of Faculty: Advanced Studies and	Research Board	Res. No. 20.3 Res. No. 191.13 (a)	Dated: 22-02-2023 Dated: 07-03-2023						
	Acadomic Council		Pos No	Datad						

Res. No.

Dated:

Academic Council

Title of Subject	:	Power System Operation and Control (ELP625)					
Discipline	:	Electrical Power Engineering					
Semester	:	1 st Semester C.Hs: 02					
Effective	:	23 rd ELP-Batch and onwards					
Marks	:	50					
Assesment	:	Sessional 10% Mid Semester Exam 30% Final Semster Exam 60%					
Minimum Contact Hrs	:	28					

Aims	To develop the skills of student and provide adequate knowledge about the concepts of automated power system control. The course will equip student with the understanding of SCADA and various other application functions used in the modern power system.								
Objectives	Upon successful Completion of this course the student will be able to: Describe the objectives of power system control and various power system operation modes Describe SCADA and its functions Understand the concept of Active and reactive power control Understand power system security Economic dispatch and automated generation control.								
Contents	Introduction Structure of Power System control, SCADA sys	stem, Power control sy	stems in Pakistan.						
	Active power and frequency control Fundamentals of Turbine speed governing system, Governor with speed-droop characteristics, Load sharing between parallel operating generators, Control of generating unit power output								
	Economic Dispatch and Optimization Optimization Fundamentals, classification of optimization problems, Maintenance optimization, Thermal system economic dispatch with and without network losses, Hydrothermal scheduling Economic of Multi-area interconnection, concept of wheeling, introduction of unit commitment.								
	Automatic Generation Control Fundamentals of Automatic generation control (AGC), Automatic generation control in an isolated power systems and in two-area systems, AGC in systems with more than two areas, Performance of AGC under normal and abnormal conditions, Implementation of AGC,								
	Reactive power and voltage control Fundamental concepts, Production and absorption	on of reactive power, N	Methods of voltage control						
Books : Recommended	Power System Stability and control	P.Kundu							
(Latest available editions)	Power Generation, Operation, and Control	A. J. Woods B. F. Wollenberg							
,	Optimization of power system operation	Jizhong Z	-						
Approval: :	Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council	Res. No. 2.2 Res. No. 20.3 Res. No. 191.13 (a) Res. No.	Dated: 14-10-2022 Dated: 22-02-2023 Dated: 07-03-2023 Dated:						

Title of Subject	:	Clean Energy Technologies (ELP635)				
Discipline	:	Electrical Power Engineering				
Semester	:	1 st Semester	C.Hs:	02		
Effective	:	23 rd ELP-Batch and onwards				
Marks	:	50				
Assesment	:	Sessional 10%	Mid Semester Exam 30%	Final Semster Exam 60%		
Minimum Contact Hrs	:	28				

Aims	: To impart knowledge about conversion of different kinds of energy into electrical energy, physical and engineering aspects and arrangement of different components in a power station where this energy conversion takes place.									
Objectives	On completion of the above course the student will be able to:									
Contents	 Understand the environmental issues with convention energy sources Know about the renewable energy conversion techniques. Familiar with synchronization of small power plants with national grid system 									
	 Energy sources and environmental impacts Basic energy concepts; sustainability problems Solar power (solar thermal and photovoltaics) Wind energy resources, wind turbines, aerodynamics, components and operational characteristics Biomass resources, energy conversion processes including gasification and pyrolysis Fuel cells operation, characteristics and electrochemistry Hydel power, Tidal power, wave energy technology, geothermal energy, hydrogen energy. Advanced Power Generation Systems Combine heat & power (CHP) intergrated coal gasification technology (ICGT) Consideration for synchronizing of small power plants (wind, solar) to national grid system Energy Efficenecy and optimization Advanced and existing power systems Relative cost of various Renewable Energy power plants. Renewable Energy Resources available in Pakistan, 									
Books Recommended (Latest available editions)	: Principles of Energy conversion Wind and Solar Power Systems Fundamentals of renewable energy processes Aldo V. Da Rosa									
Approval:	: Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Res. No. 2.2 Dated: 14-10-2022 Advanced Studies and Research Board Academic Council Res. No. 191.13 (a) Dated: 07-03-2023 Res. No. Dated: 07-03-2023									

Title of Subject	:	Power System Analysis (ELP640)				
Discipline	:	Electrical Power Engineering				
Semester	:	1 st Semester	C.Hs:	02		
Effective	:	23 rd ELP-Batch and onwards				
Marks	:	50				
Assessment	:	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%		
Minimum Contact Hrs	:	28				

Aims Objectives	 This subject aims to provide skills and knowledge to the students on power systems analysis Upon successful Completion of this course the student will be able to: Analyse various symmetrical as well as electrical faults and calculate fault current levels for various systems. Understand and compare various iterative methods of load flow analysis for determining various node voltages and power flows in lines 							
Contents	:							
	Introduction Types of faults, Occurrence and seniority of faults, Effect of faults on system components.							
	Symmetrical Fault Analysis Equivalent circuit of synchronous machines, transformer and transmission lines. Percentage method, Short circuit kVA calculations, Reactors, Bus Impedance matrix, Symmetrical fault analysis using bus impedance matrix, Computer applications for symmetrical fault analysis							
	Unsymmetrical faults Symmetrical components, Sequence impedance of synchronous machines, Sequence networks of large systems. Unsymmetrical fault analysis, Effect of neutral grounding on fault level.							
	Power Flow Analysis Network model formulation, Formation of Bus Admitance matrix, Bus Classifications, Power flow problem, Applications of power flow studies, Methods for power flow analysis.							
	·							
Books Recommended (Latest available editions)	Elements of Power System Stevensen Jr. Power Systems Hadi Saadat Modern power system Analysis D.P Kothari							
Approval:	Board of Studies, Deptt. of Electrical Engg.Res. No. 2.2Dated: 14-10-2022Board of Faculty:Res. No. 20.3Dated: 22-02-2023Advanced Studies and Research BoardRes. No. 191.13 (a)Dated: 07-03-2023Academic CouncilRes. No.Dated:							

Title of Subject	:	Power Electronics and Motor Drives (ELP651)				
Discipline	:	Electrical Power Engineering				
Semester	:	2 nd Semester C.Hs: 02				
Effective	:	23 rd ELP-Batch and onwards				
Marks	:	50				
Assessment	:	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%		
Minimum Contact Hrs	:	28				

Aims Objectives :	 To provide adequate Knowledge and clear understanding about the power electronic converters and their applications. Upon successful Completion of this course the student will be able to: have a clear understanding and knowledge about the modern semiconductor devices and their usage in power converters. analyze, model and design control strategies of various converters topologies 						
_	Describe principle of operation, characteristics of power electronic converter-based motors						
Contents :	Solid-State Devices Latest development in the area of Power Electronics covering modern devices, converter topologies & control strategies.						
	Power Electronic Converters Controlled rectifiers, single phase and three phase inverters, AC voltage controllers, DC-DC Converters, switch mode converters, Cycloconverters, Matrix converters Power Factor analysis of power electronic converters, Applications of power electronic convert methods for Power Electronic converters						
	<u>Solid State Drives</u> Closed loop control of solid-state drives, Thyristor starting & speed control of Induction motors and Direct current motors, Inverter fed induction motor drives, Cyclo-converter controlled AC drives, Brushless excitation of synchronous machines. Effects of non- sinosoidal supply on motors operation						
Books : Recommended (Latest available editions)	Power Electronics Hand BookMuhammad H. RashidFundamentals of Power ElectronicsRobert W Erickson, Dragan- MaksimovicPower Semiconductors DrivesS. B. DewanPower Semiconductors DrivesG. K. Dubey						
Approval: :	Board of Studies, Deptt. of Electrical Engg.Res. No. 2.2Dated: 14-10-2022Board of Faculty:Res. No. 20.3Dated: 22-02-2023Advanced Studies and Research BoardRes. No. 191.13 (a)Dated: 07-03-2023Academic CouncilRes. No.Dated:						

Title of Subject	:	Power System Stability (ELP660)				
Discipline	:	Electrical Power	Engineering			
Semester	:	2 nd Semester	C.Hs:	: 02		
Effective	:	23 rd ELP-Batch a	nd onwards			
Marks	:	50				
Assessment	:	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%		
Minimum Contact Hrs	:	28				

Aims Objectives	This subject aims to provide skills and knowledge to the students on power systems stability.
	Upon successful Completion of this course the student will be able to:
	• Under stand the concept of power system stability.
	• Describe the small signal, transient and voltage stability
	• Use methods to improve the stability of power system
Contents	:

Introduction to Power System stability problems

Basic concept and definition, power versus angle relationship, classification of stability, swing equation

Small-Signal Stability

Fundamental concepts of stability of dynamic systems, Eigen properties of state matrix, Small signal stability of single machine infinite bus system. Methods to improve small-signal stability

Transient Stability

An elementary view of transient stability, Equal area criterion, transient stability phenomenon in response to a short circuit fault, Factors influencing transient stability, Methods to improve transient stability

Voltage Stability

Basic concepts related to voltage stability, Voltage collapse.

Books Recommended (Latest available editions)	:	Power System Stability and control Power System control and stability		P. Kundur P.M Anderson and A.A. Fouad		
Approval:	:	Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council	Res Res	. No. 2.2 . No. 20.3 . No. 191.13 (a) . No.	Dated: 14-10-2022 Dated: 22-02-2023 Dated: 07-03-2023 Dated:	

Title of Subject	:	Advanced High Voltage Engineering (ELP670)				
Discipline	:	Electrical Power	Electrical Power Engineering			
Semester	:	2 nd Semester	C.Hs	: 02		
Effective	:	23rd ELP-Batch at	23 rd ELP-Batch and onwards			
Marks	:	50				
Assesment	:	Sessional 10%	Mid Semester Exam 30%	Final Semster Exam 60%		
Minimum Contact Hrs	:	28				

Aims Objectives :	 To develop the skills of student and provide adequate knowledge about the concepts of high voltage engineering. Upon successful Completion of this course the student will be able to: Describe reasons of increasing transmission voltage level from time to time Differentiate between different voltage levels Understand the various aspects of high voltage generation and measurements Learn the operation of high voltage power supplies for ac, dc, and impulse voltages Learn high voltage measurement techniques and interfacing with low voltage instrumentation. 							
Contents :	 Generation of High Voltages Introduction to High Voltage Engineering, Review of generation of high voltage: A.C., D.C. and impulse, Design of multi-stage impulse generator, Special features of high voltage generating equipment, Study of wave shaping circuits for generating lightning and switching impulses High Voltages Measurements Voltage measurements by sphere gaps. Potential dividers for ac and dc voltage measurements. Potential dividers for impulse voltage measurements. Sources of errors in HV measurements. Dielectric loss and capacitance measurements, Partial-discharge measurements, Nondestructive measurements Bridge methods- Transformer arm ratio bridge and Schearing 							
Books : Recommended (Latest available editions)	bridge methods Insulation Breakdown Breakdown in gases, liquid and solids, breakdown of dielectrics, , insulation testing techniques and ageing in insulation, Preventive measures of avo of various parameters on the dielectric strength of High Voltage Engineering- Fundamentals, High Voltage- Measurements, Testing and D	l application, Prediction of deterioration and oiding total breakdown of dielectrics, Effect of insulation system E. Kuffel, W. S. Zaengl, Kuffel, J. Design T. J. Gallagher A. J. Pearmain						
Approval: :	High Voltage Engineering- Theory and Prac Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council	Res. No. 2.2 Dated: 14-10-2022 Res. No. 20.3 Dated: 22-02-2023 Res. No. 191.13 (a) Dated: 07-03-2023 Res. No. Dated:						

Title of Subject	:	Energy Mana	gement (ELP680)				
Discipline	:	Electrical Power I	Electrical Power Engineering				
Semester	:	2 nd Semester		C.Hs:	02		
Effective	:	23rd ELP-Batch an	nd onwards				
Marks	:	50					
Assessment	:	Sessional 10%	Mid Semester Exam	30%	Final Semester Exam 60%		
Minimum Contact Hrs	:	28					

Aims		The module/course is aimed to emphasis on the energy management especially demand side electrical power management techniques, issues and framework required appreciate the significance of energy related matters.							
Objectives	: • •	Upon successful Completion of this course the student will be able to: Describe Electrical Power Management from utility perspective Describe benefits and potential of demand side management Understand Benefits of energy management form customer perspective							
Contents	:								
		Energy Resource Management, Supply Side Management, Potential Benefits, Depletion of Traditional Fuels, Energy Efficiency and Conservation, Economic Appraisal of Conventional/Non conventional Technology, Customer Perspective, Integrated Network System, Rationale and Feasibility of Energy Management, Role of Electrical Engineer as Energy Managers.							
		Demand Side Management (DSM), the utility per demand, the load duration curve (SSM, DSM). D potential of DSM, Current trends in DSM, DSM	Definition, Background						
		Energy Management, the customer perspective. The customer perspective of DSM, Integrated energy management approaches. The process of energy management in industry, TARRIFF and billing techniques, Energy Audits, Identification of Potential of Energy Savings, Rationale and Feasibility of Energy Management, Role of electrical engineer as energy managers.							
		End-use of electricity. Motor Loads, Lighting System, HVAC, Furnaces and Heat Treatment System, Cooking Appliances, Welding and arcing, Inductive Loads, battery charging, electro chemical and electrometatturgical applications							
		Energy Efficient System. Energy management system and Demand leveling, P.F. correction, Variable speed drives. Intelligent Lighting System, Thermal Insulation's.							
		Monitoring and metering. Energy monitoring equipment, Data Loggers for the measuremen of Load, light, temperature. The concept of Smart meter.							
Books Recommended (Latest available editions)	:	Energy Management Handbook Guide to energy management, Wayne C Turner and Steve Barney L. Capehart, Wayne C.Turner, and William L.Kappady							
		Handbook of energy audits, William J. Kennedy Albert Thumann, P.E., G							
Approval:	:	Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council	Res. No. 2.2 Res. No. 20.3 Res. No. 191.13 (a) Res. No.	Dated: 14-10-2022 Dated: 22-02-2023 Dated: 07-03-2023 Dated:					

Title of Subject	:	Power System Protection (ELP690)					
Discipline	:	Electrical Power	Electrical Power Engineering				
Semester	:	2 nd Semester	2 nd Semester C.Hs: 02				
Effective	:	23rd ELP-Batch a	23 rd ELP-Batch and onwards				
Marks	:	50	50				
Assessment	:	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%			
Minimum Contact Hrs	:	28					

Aims Objectives Contents	 To provide adequate Knowledge and design Power system protection schemes to ensure safe and reliable operation of the power system Upon successful Completion of this course the student will be able to: Understand the function and operation of the protective system elements. Select, apply and operate protection systems. 						
	Elements of protection systems Zones of protection. Types, construction, operation and selection of circuit breakers. Types, characteristics and selection of fuses. Reactors and bus bar arrangement. Neutral and system grounding. Lightening arreators.						
	Protective Relays Different types and characteristics of protective relays, Solid state relays, Microprocessor based relays						
	Protection Schemes Principle and applications of over-current protection. Protection schemes for distance protection. Unit protection.						
	Equipment Protection Protection of alternators, Transformers, bus bars, feeders and the transmission lines. Protection of Motors.						
Books Recommended (Latest available editions)	: Power System Protection and Switchgear Badri Ram Network Protection and Automation, Alstom Protective Relaying, J.L. Blackburn,						
Approval:	: Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Res. No. 2.2 Dated: 14-10-2022 Advanced Studies and Research Board Academic Council Res. No. 191.13 (a) Dated: 07-03-2023 Res. No. Dated: 07-03-2023						

Title of Subject	:	FACTS and HVDC (ELP705)					
Discipline	:	Electrical Power E	Electrical Power Engineering				
Semester	:	3rd Semester	3rd Semester C.Hs: 02				
Effective	:	23rd ELP-Batch an	23 rd ELP-Batch and onwards				
Marks	:	50					
Assessment	:	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%			
Minimum Contact Hrs	:	28					

Aims	:	This subject aims to provide knowledge to the students on the concepts and technology of flexible ac transmission systems and HVDC transmission.						
Objectives	:	On completion of the above course the student will be able to:						
Contents		 Understand the basic concepts, principles and operation of fast high power electronic controllers known as Flexible AC Transmission Systems (FACTS) Understand how to enhance power system stability, minimize transmission losses and effectively increase transmission capacity by using FACTS controllers Know the components, issues and merits of HVDC transmission to overcome some of demerits of A/C transmission 						
Contents	·	Power flow in AC systems, Constraints Transmission line compensation, Definition of I	FACTS concepts and general system considerations Power flow in AC systems, Constraints of maximum transmission line loading, Transmission line compensation, Definition of FACTS, Benefits of FACTS, Classification of FACTS Controllers, concept of voltage and current source converters					
	Static shunt compensators Operation and control of TCR, TSC, Principle of operation and applications STATCOM- Comparison between SVC and STATCOM.							
		Static series compensation Principle operation and applications of TCSC, TSSC and SSSC						
	Combined compensators Introduction to unified power flow controller (UPFC), Circuit Arrangement, Operation control of UPFC- Applications of UPFC – Basic operating principlecharacteristic applications of interline power flow controller (IPFC)-							
	HVDC Transmission Components of HVDC . Types of HVDC links, Comparison of power transmission of of high voltage a.c and d.c transmission systems. Economics of HVDC, Issues with transmission.							
Books Recommended (Latest available	:	: Understanding FACTS Narain G. Hingorani Laszlo G ThyristorBased FACTS Controllers for Electrical Transmission Systems R.M. Mathur R.K. Varma						
editions)		Power System Stability and control FACTS Controllers in Power Transmission and						
Approval:	:	Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council	Res. No. 2.2 Res. No. 20.3 Res. No. 191.13 (a) Res. No.	Dated: 14-10-2022 Dated: 22-02-2023 Dated: 07-03-2023 Dated:				

Title of Subject Discipline Semester Effective Marks Assesment Minimum Conta	 Power Engineering Laboratory (ELP720) Electrical Power Engineering 3rd Semester C.Hs: 01 23rd ELP-Batch and onwards Practical 50 Lab Evaluation work 40% Final Semester Exam 60%
Aims	The aim of this course is to develop the experimental skills of student and provide practical knowledge about electrical systems
Objectives	 Upon successful Completion of this course the student will be able to: Evaluate the performance of electrical machines and power electronic converters Familiar with protective schemes for power systems. Understand the concepts of high voltage engineering Understand the processes of reneable energy sources
Contents	
	Characteristics of rotating machines, transformers, and power utilization equipment.Protective schemes for power systems.Measuring instruments.Data acquisation Performance of power electronic converters.Breakdown of gases, liquids and solids.Reneable energy sources: wind, solar cell, biomass, tidal, fuel cell.
Books Recommended (Latest available editions)	: Laboratory Manuals
Approval:	Board of Studies, Deptt. of Electrical Engg. Board of Faculty:Res. No. 2.2 Res. No. 20.3Dated: 14-10-2022 Dated: 22-02-2023Advanced Studies and Research Board Academic CouncilRes. No. 191.13 (a) Res. No.Dated: 07-03-2023 Dated:

Title of Subject :	Power System Planning and Management (ELP730)			
Discipline :	Electrical Power I	Engineering		
Semester :	3 rd Semester	C.Hs:	: 02	
Effective :	23rd ELP-Batch and	nd onwards		
Marks :	50			
Assessment :	Sessional 10%	Mid Semester Exam 30%	Final Semester Exam 60%	
Minimum Contact Hrs :	28			

Aims	This module/course focuses on role of power planning and management for the sustainable development of energy and power system network.			
Objectives	Upon successful Completion of this course the student will be able to: Understand the concept of reliability Familiar with Energy policy and sustainable development Understand Environmental impact assessment of power system Understand Financial and investment planning of power system			
Contents				
	Energy resources development, Sustainable Development, Strategy in Sustainable Development, Guiding Engineering Principles of Sustainable Development, Energy conservation, Regulation of power systems, Study of NEPRA and its performance, Privatization of power plants and transmission system, Domestic and foreign investment in the power sector of Pakistan. Environmental assessment of power plants and high tension transmission lines. Extension and renovation of power transmission and distribution systems, Management of large power systems, Application of IT in planning, design, execution and operation of power systems, Accounting and Auditing, Financial Management, Investment planning and calculation of financial and economic returns, Power tariffs, Project management, Power project negotiating, tendering and contracting, Feasibility studies for power generation and transmission, Human resources development and personal welfare, Application of safety standards in power systems, Research and development in power sector.			
Books Recommended (Latest available editions)	Concepts in Reliability EngineeringL.S. Srinath Guide to energy services companies, Cary Bullock and George Caraghiaur Electric Power Planning for Regulated and Deregulated Markets Arthur Mazer			
Approval:	: Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Res. No. 2.2 Dated: 14-10-2022 Advanced Studies and Research Board Academic Council Res. No. 191.13 (a) Dated: 07-03-2023 Res. No. Dated: 07-03-2023			

Title of Subject Discipline Term Effective Marks	 Advance Electrical Machine Design (ELP748) Electrical Power Engineering 3rd Semester 23rd ELP-Batch Onwards 50 			
Assessment	: Sessional 10% Mid Semester Exam 30% Final Semester 60%			
Credit Hours	: 02			
Minim Contact hrs	: 28			
Aims	To produce clear understanding of Electrical machine design principles and requirements of safety before, during and after operation and accident, The subject teacher must train electrical engineering students in the complete process of design, from drawing table to manufacturing and utilization of the electrical machines and equipment.			
Objectives	: The student must learn all techniques related to electrical machine design			
	To open and re-assemble machines.			
	To design electrical machines.			
	To develop model of different designs of electrical machines through simulations			

(The students will have to submit case studies on machines for sessional evaluation.

THE DESIGN CONSIDERATIONS

Basic consideration, Specific loads and output equations, Limitations, Design and constructional features of rotating machine, Basic principles of electrical machines and Basic machine forms

SELECTION OF MATERIALS FOR ELECTRICAL MACHINES

Electrical conducting materials, Magnetic materials, Insulting materials, Classes of insulating materials

HEATING, COOLING AND VENTILATION OF ELECTRICAL MACHINES

Modes of heat transfer, The heat flow problems, Temperature rise-time relation, Duty cycles, Enclosures, Cooling and ventilation of rotating electrical machine, Limits of temperature rise

TRANSFORMER

Transformer types, Standard conductors, Cooling, Output equation, Design of core section, Design of insulation and Design of tanks with tubes

DESIGN OF ROTATING MACHINES

- 1. Three phase and single-phase Induction motors: Design, Output equation, Calculation of man dimensions, Specifications, Output equation, Stator design and Rotor design
- 2. Switched Reluctance Machines: Construction, working, phase, Design of different phase machine, converters with one switch and two switches per phase

MECHANICAL DESIGN

Design of shaft, Bearings, mechanical strength of rotors and Design of fan

	 M.G. Say Pitman, Alternating Current Machines, , Latest Edition S. Rao Khanna, Testing Commissioning Operation and Maintenance of Electrical Equipment, Latest Edition Electronic control of Switched Reluctance Machines, TJ Miller 				
Approval:	 Board of Studies, Deptt. of Electrical Engg. Board of Faculty: Advanced Studies and Research Board Academic Council 	Res. No. 2.2 Res. No. 20.3 Res. No. 191.13 (a) Res. No.	Dated: 14-10-2022 Dated: 22-02-2023 Dated: 07-03-2023 Dated:		