CURRICULUM

for the

M.E Mechatronic Engineering Program

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO, SINDH, PAKISTAN 2018

INTRODUCTION PG PROGRAM

Mechatronics refers to a flexible, multi-technological approach for integration of mechanical engineering, computer engineering, electronics and information sciences. Mechatronics is essential in the design of intelligent products. It allows engineers to transform their virtual concepts into real life applications. It is a relatively new concept relating to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The programme involves research and coursework that will push the frontiers of technology in intelligent product design and development. The research activities involve design and control of intelligent robotic systems and automated machines. Modern state-of-the-art industries have changed rapidly from pure mechanical-, manufacturing-, and process-controlled type to electro-mechanical, fully automated and computerized. It has become the requirement for people working on those processes and production lines to have knowledge of all the related systems.

Considering the need of the time most of the state of the art industries in the world have changed from pure mechanical, manufacturing or process controlled to the ones where the processes are more of electromechanical, fully automated and mostly controlled by computers. To achieve the quality products even the most simple production lines and production processes in the industries have a blend of computers in them. It has become the requirement for people working on such processes and production lines to have knowledge of all the related systems. Graduates should have a strong command on engineering principles as well as a sound capability of converting concepts to reality. They could find themselves in industry engaged with maintenance and operation of plant equipment such as boilers, compressors, turbines, instrumentation, automation and control of advanced industrial processes using such tools as PLC and microcontroller-based control systems, process simulation for plant modifications, defense and R&D applications, engineering management, or a variety of similar areas.

PROGRAM OBJECTIVES

The main objectives of Masters in Mechatronics Engineering programme are as below:-

- Enables the students to pursue a rigorous post doctorate / research programme in Mechatronics Engineering.
- Improve the marketability of our students in the local industry, public sector and R & D organizations.
- Provide technical confidence and financial guidance needed to start a small-scale industry to graduates interested in self-employment.

MECHATRONICS PROGRAMME – EDUCATIONAL OBJECTIVES

The broad objectives of the Postgraduate program in Mechatronics Engineering are to instill in its students a solid foundation of mathematical, scientific and engineering knowledge in addition to developing the intellectual skills essential for prosperity and success in their careers. The program is structured in such a manner that the students are provided a firm theoretical foundation with opportunity to strengthen their knowledge through research assignments, practical training and projects. graduates from the programme should:

- Be effective, innovative and research oriented mechatronics engineers having strong quantitative and analytical skills.
- Be practically sound and able to use engineering tools to enhance their productivity.
- Be able to design, analyze, and solve complex problems and develop effective processes that encapsulate multi domain technologies.
- Be effective leaders with high morals and professional ethics.

PROGRAM LEARNING OUTCOMES

Program Learning Outcomes should demonstrate that our graduates have the following abilities:

- Engineering Knowledge: Apply multidisciplinary engineering knowledge to formulate and solve real world problems.
- **Problem Analysis:** Identify and formulate solutions to complex problems by performing extensive research and application of concepts gained throughout the program.
- **Design/Development of Solutions:** Design processes, components and solutions by keeping in view the requirements of the society and environment.

- **Investigation:** Investigate specific engineering problems, analyze and interpret the resultant data by tools learnt during the coursework and synthesize the data to come to a meaningful conclusion.
- **Modern Tool Usage:** Handle and use state of the art equipment to experimentally validate the theoretical concepts.
- Engineer and the Society: Asses societal problems and devise solutions.
- **Environment and Sustainability:** Become aware of the need for sustainable development and realize their role for making the environment livable.
- **Ethics:** Apply professional ethics to all engineering practices and recognize civic duties and engage in activities to accomplish them.
- Individual and Teamwork: Work on technically diverse team-based projects.
- **Communication:** Develop basic technical presentation skills, written and oral, to effectively express ideas and knowledge.
- **Project Management:** To make effective use of time, resources and skills during team-based projects, which involves integrating knowledge and technical skills from diverse subjects?
- **Research and Life Long Learning:** Obtain lifelong skills of analytical thinking, problem analysis and optimized solution formulation to contribute to uplifting and growth of the society at large and recognize the importance of continued learning

2-4 years
4-8
18 (16 for teaching and 2 for examinations)
30
6-9
12 Credit Hours
12 Credit Hours
6 Credits Hours

M.E. IN MECHATRONIC ENGINEERING PROGRAM

STREAMS OF M.E. IN MECHATRONIC ENGINEERING PROGRAM

M.E in Mechatronic Engineering program is offered in two streams:

- 1- Robotics and Industrial Automation Stream
- 2- Smart Electromechanical Systems Stream

SCHEME OF STUDIES FOR M.E IN MECHATRONIC ENGINEERING Semester-1

S. No.	Subject	Credit Hours
1	Core 1	3
2	Core 2	3
3	Elective-I	3

Semester-2

S. No.	Subject	Credit Hours
1	Core 3	3
2	Core 4	3
3	Elective-II	3

Semester-3				
S. No.	Subject	Credit Hours		
1	Elective-III	3		
2	Elective-IV	3		

Semester-4

S. No.	Subject	Credit Hours
1	Thesis Research	6

M.E in Mechatronic Engineering (Robotics and Industrial Automation Stream)

All courses: 3 Credit Hour COMPULSORY (CORE) COURSES

S.No	SEMESTER	Course Code	Course Name
1	First	MTS-601	Advanced Robotics
2	First	MTS-602	Data Acquisition and Control
3	Second	MTS-603	Image Processing for Intelligent Systems
4	Second	MTS-604	Advanced Embedded Systems

ELECTIVE COURSES

Each student will select one subject from each group of following subjects:

S.No.	SEMESTER	Course Code	Course
		MTS-610	Advanced Manufacturing Design Techniques
		MTS-613	Precision Manufacturing Systems
1	First	MTS-623	Computer Integrated Manufacturing
1	(Elective-I)	MTS-627	Laser Material Processing
		MTS-628	Rapid Prototyping, Tooling and Automation
		MTS-641	Advanced Actuators
		MTS-609	Motion Planning for Mobile Robots
		MTS-614	Optimization of Engineering Systems
2	Second	MTS-615	Industrial Control Technology
	(Elective-II)	MTS-618	Kinematics of Mobile Robotic Systems
		MTS-619	Cognitive Robotics
		MTS-616	Fuzzy Control Systems
		MTS-617	Optimal Control
2	Third (Elective-III)	MTS-621	Linear Control Systems
5		MTS-624	Robust Control
		MTS-625	Adaptive Control
		MTS-629	Digital Control Systems
		MTS-611	Machine Vision
		MTS-612	Machine Learning
4	Third	MTS-620	Computational Geometry
4	(Elective-IV)	MTS-622	Advanced Measurement Techniques
		MTS-626	Micro-Electro Mechanical Systems
		MTS-630	Filtering and Tracking
5	Fourth	MTS-699	Thesis Research

M.E in Mechatronic Engineering (Smart Electromechanical Systems Stream)

All courses: 3 Credit Hour COMPULSORY (CORE) COURSES

Sr.No.	SEMESTER	Course Code	Course
1	First	MTS-601	Advanced Robotics
2	First	MTS-602	Data Acquisition and Control
3	Second	MTS-603	Image Processing for Intelligent Systems
4	Second	MTS-604	Advanced Embedded Systems

ELECTIVE COURSES

Each student will select one subject from each group of following subjects:

Sr.#	SEMESTER	Course Code	Course
		MTS-626	Micro-Electro Mechanical Systems
1	First	MTS-605	Sensor and Sensing Technology
1	(Elective-I)	MTS-638	Smart Materials and Structures
		MTS-641	Advanced Actuators
	Second	MTS-606	Stochastic Systems
2	(Elective II)	MTS-621	Linear Control Systems
	(Elective-II)	MTS-636	Fuzzy Logic Hybrid Systems
			A
		M15-608	Artificial Intelligence
2	Third	MTS-631	Paradigms of Artificial Intelligence
3	(Elective-III)	MTS-634	Artificial Neural Networks
		MTS-639	Pattern Recognition and Analysis
		MTS 622	Programming of Embodded Systems
		WITS-055	
4	Third	MTS-614	Optomechatronic Systems
7	(Elective-IV)	MTS-637	Natural Language Processing
		MTS-632	Real Time Systems
5	Fourth	MTS-699	Thesis Research

M.E. MECHATRONIC ENGINEERING CORE COURSES

Disciplines : ME. Mechatronic Engineering Semester : 1 st Effective : 19 ME-MTS Batch & Onwards Credit hours : 42 Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators. 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link and three-link robot manipulators Differential Kinematics Geometrie Jacobian, Jacobian of two-link, three-link and PUMA manipulators. Differential Kinematics Geometrie Jacobian, Jacobian of two-link, three-link and PUMA manipulators. Dingreential Kinematics Geometrie Jacobian, Jacobian of two-link, three-link and PUMA manipulators. Nation Control Jagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Digentrial Kinematics Compliance control, torque feedforward control, constrained motion, hybrid force-motion control Vision for control,	Title of Subject	: ADVANCED ROBOTICS [MTS-601]				
Semester : 1 ⁴ Effective : 19 ME-MTS Batch & Onwards Credit hours : 03 Minimum Contact hours : 42 Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit- Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Introduction, Inverse kinematics Geometric Jacobian, Jacobian of two-link, three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, impedance control, centralized control Force Control Gorgramming languages Overview of robot programming languages	Disciplines	: M.E. Mechatronic Engineering				
Effective : 19 ME-MTS Batch & Onwards Credit hours : 03 Minimum Contact hours : 42 Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link, three-link and PUMA manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematics ingularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, impedance control, centralized control Force Control Compliance control, imge processing, pose estimation, camera calibration	Semester	: 1 st	-			
Credit hours : 03 Minimum Contact hours : 42 Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulators, workspace Introduction, Inverse kinematics of two-link, three-link and PUMA manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, imgedance control, centralized control Force Control Compliance control, imgedance control, centralized control Force Control Visual Servoing Robot programming languages Nethor tonetrol, Latest edition. • Sicil	Effective	: 19 ME-MTS Batch & On	Onwards			
Minimum Contact hours : 12 Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, imge processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages, Introduction to Robot Operating System. <td< th=""><th>Credit hours</th><th>: 03</th><th></th><th></th></td<>	Credit hours	: 03				
Assessment : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit- Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, imge processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages 	Minimum Conta	act hours : 42				
Marks Final Examinations. Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Wision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot Operating System. Recommended • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Siciliano, B., Sciavicco, L., Villan	Assessment	: 10% Sessional Work, 3	30% Mid Semester	Examinations, 60%		
Marks : 100 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Geometric Jacobian of two-link, three-link robot manipulators Differential Kinematics inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Nobot Doparating Baguages Recommended • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. Books • Siciliano, B., Sciavicco,		Final Examinations.				
Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link robot manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, constrained motion, hybrid force-motion control Visual Servoing Visual Servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. Books : Planning and Control., Latest edition. • Siciliano, B.,	Marks	: 100				
 Aim: To develop kinematic and dynamic knowledge as applied to robots. Objectives: To develop comprehension of forward and inverse kinematics for robot manipulators To introduce formulation necessary to develop dynamic models of manipulators To understand force and motion control of robots Contents: Forward Kinematics To understand force and motion control of robots Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, impedance control, force control compliance control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. John J. Craig, Introduction to Robotics: Analysis and Control, Latest edition. John J. Craig, Introductio						
Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, constrained motion, hybrid force-emotion control Visual Servoing Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. Books : Siciliano, B., Sciavicco, L., Villani, C., Oriolo, G,	Aim:	To develop kinematic and dynami	c knowledge as ap	oplied to		
Objectives: 1. To develop comprehension of forward and inverse kinematics for robot manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link, three-link and PUMA manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-emotion control Visual Servoing Visual Servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. <td< th=""><th></th><th>robots.</th><th></th><th></th></td<>		robots.				
manipulators 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Visual Servoing Visual Servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. <t< th=""><th>Objectives:</th><th>1. To develop comprehension of</th><th>forward and inver</th><th>se kinematics for robot</th></t<>	Objectives:	1. To develop comprehension of	forward and inver	se kinematics for robot		
 2. To introduce formulation necessary to develop dynamic models of manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. 3. John J. Craig, Introduction to Robotics: Analysis and Control, Latest edition. 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Advanced Studies and Research Board Res.No.3.1 Dated: 27-08-2018 Academic Council Res.No.3.1 Contect: 17-09-2018 		manipulators				
manipulators 3. To understand force and motion control of robots Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, impedance setimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Planning and Control., Latest edition. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition.		2. To introduce formulation nec	essary to develo	p dynamic models of		
 3. To understand force and motion control of robots Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link, and three-link robot manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, impedance control, force control, constrained motion, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. 3. John J. Craig, Introduction to Robotics: Mathematics and Control, Latest edition. 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. 		manipulators				
Contents: Forward Kinematics Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended Books • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. Planning and Control • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. Paperoval : Board of Studies Advanced Studies and Research Board Res. No. 3.1 Res. No. 3.1 Dated: 27-08-2018 Dated: 17-09-2018		3. To understand force and motion of	control of robots			
Rotation matrix, pose, Euler angles, Quaternion, transformation, Denavit-Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest ed	Contents:	Forward Kinematics				
Hartenberg convention, kinematics of two-link, three-link, PUMA and Stanford manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction		Rotation matrix, pose, Euler ang	les, Quaternion, t	ransformation, Denavit-		
manipulator, workspace Inverse Kinematics Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Res.No. 3.1 Dated: 27-08-2018 Advanced Studies and Res		Hartenberg convention, kinematics o	f two-link, three-li	nk, PUMA and Stanford		
Inverse Kinematics Introduction, Inverse Kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics:		manipulator, workspace				
Introduction, Inverse kinematics of two-link and three-link robot manipulators Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended Books • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • Robot rol, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Res. No. 93.7(C) Dated: 27-08-2018 Res. No. 93.7(C)		Inverse Kinematics				
Differential Kinematics Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • Siciliano, B., Sciavicco to Robotics: Mechanics and Control, Latest edition. • Solin J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Bo		Introduction, Inverse kinematics of tw	o-link and three-lin	k robot manipulators		
Geometric Jacobian, Jacobian of two-link, three-link and PUMA manipulators, kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control. , Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Mechanics and Control, Latest edition. • Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Board Res. No. 151.118(a) Dated: 17-09-2018		Differential Kinematics				
kinematic singularities, inverse kinematics Jacobian Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. <tr< th=""><th></th><th>Geometric Jacobian, Jacobian of two</th><th>o-link, three-link a</th><th>nd PUMA manipulators,</th></tr<>		Geometric Jacobian, Jacobian of two	o-link, three-link a	nd PUMA manipulators,		
Trajectory Planning Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 4. Studies and Research Board Res.No. 151.18(a) Dated: 27-08-2018 Academic Council Res. No. 93.7(C) Dated: 17-09-2018		kinematic singularities, inverse kinem	atics Jacobian			
Path and trajectory, point-to-point motion, motion through sequence of points Dynamics Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval * Board of Studies Advanced Studies and Research Board Res.No. 3.1 Dated: 27-08-2018 Academic Council		Trajectory Planning				
DynamicsLagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulationsMotion ControlJoint space control, torque feedforward control, centralized controlForce ControlCompliance control, impedance control, force control, constrained motion, hybrid force-motion controlVisual ServoingVision for control, image processing, pose estimation, camera calibration, position and image based visual servoingRobot programming languages Overview of robot programming languages, Introduction to Robot Operating System.Recommended Books• Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition.• Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition.• 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition.Approval* Board of Studies Advanced Studies and Research BoardRes. No. 3.1 Res. No. 93.7(C)Dated: 27-08-2018 Res. No. 93.7(C)		Path and trajectory, point-to-point mo	tion, motion through	h sequence of points		
Lagrange formulation, dynamic models of two-link Cartesian, planar and parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Board Res. No. 151.18(a) Dated: 04-09-2018		Dynamics				
parallelogram arm, Newton-Euler formulations Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Board Res.No. 93.7(C) Dated: 17-09-2018		Lagrange formulation, dynamic m	odels of two-link	Cartesian, planar and		
Motion Control Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Res. No. 3.1 Dated: 27-08-2018 Academic Council		parallelogram arm, Newton-Euler form	nulations			
Joint space control, torque feedforward control, centralized control Force Control Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Res. No. 3.1 Dated: 27-08-2018 Res. No. 93.7(C) Academic Council Res. No. 93.7(C)		Motion Control				
Force ControlCompliance control, impedance control, force control, constrained motion, hybrid force-motion controlVisual ServoingVision for control, image processing, pose estimation, camera calibration, position and image based visual servoingRobot programming languages Overview of robot programming languages, Introduction to Robot Operating System.Recommended Books• Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition.• Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition.• 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition.Approval: Board of Studies Advanced Studies and Research Board Academic CouncilRes. No. 3.1 Res. No. 93.7(C)Dated: 27-08-2018 Res. No. 93.7(C)		Joint space control, torque feedforwar	d control, centralize	ed control		
Compliance control, impedance control, force control, constrained motion, hybrid force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 4pproval * Board of Studies Res. No. 3.1 Advanced Studies and Research Board Academic Council Res. No. 3.1 Dated: 27-08-2018 Res. No. 93.7(C) Dated: 17-09-2018		Force Control				
force-motion control Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control., Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 4. Studies Reproval * Board of Studies Advanced Studies and Research Board Res. No. 3.1 Dated: 27-08-2018 Res. No. 93.7(C) Dated: 17-09-2018		Compliance control, impedance contr	ol, force control, co	onstrained motion, hybrid		
Visual Servoing Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System.Recommended Books• Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition.• Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition.• 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition.Approval: Board of Studies Advanced Studies and Research Board Academic CouncilRes. No. 3.1 Res. No. 93.7(C)Dated: 27-08-2018 Dated: 17-09-2018		force-motion control				
 Vision for control, image processing, pose estimation, camera calibration, position and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council 		Visual Servoing				
and image based visual servoing Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System.Recommended Books• Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition.• Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition.• 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition.Approval: Board of Studies Advanced Studies and Research Board Academic CouncilRes. No. 3.1 Res. No. 93.7(C)Dated: 27-08-2018 Dated: 17-09-2018		Vision for control, image processing,	pose estimation, car	mera calibration, position		
Robot programming languages Overview of robot programming languages, Introduction to Robot Operating System. Recommended Books Scialiano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 4. Sproval • Board of Studies Advanced Studies and Research Board Academic Council		and image based visual servoing				
Overview of robot programming languages, Introduction to Robot Operating System. Recommended Books • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. • Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 4. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 5. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. • 6. Advanced Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Res. No. 3.1 Res. No. 151.18(a) Dated: 04-09-2018 Res. No. 93.7(C)		Robot programming languages				
 Recommended Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G, Robotics: Modelling, Planning and Control, Latest edition. Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Res. No. 3.1 Res. No. 93.7(C) 		Overview of robot programming la System.	inguages, Introduct	ion to Robot Operating		
 Books : Planning and Control , Latest edition. Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council 	Recommended	• Siciliano, B., Sciavicco, L., Villar	ni, L., Oriolo, G, Ro	botics: Modelling,		
 Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Latest edition. 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Dated: 27-08-2018 Res.No.151.18(a) Dated: 04-09-2018 Res. No. 93.7(C) Dated: 17-09-2018 	Books :	Planning and Control, Latest ed	ition.	2		
edition. • 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Res. No. 3.1 Res. No. 151.18(a) Dated: 27-08-2018 Dated: 04-09-2018 Res. No. 93.7(C)		• Robert J. Schilling, Fundamentals	of Robotics: Analy	sis and Control, Latest		
 3. John J. Craig, Introduction to Robotics: Mechanics and Control, Latest edition. Approval : Board of Studies Advanced Studies and Research Board Academic Council Res. No. 3.1 Dated: 27-08-2018 Res.No.151.18(a) Dated: 04-09-2018 Res. No. 93.7(C) Dated: 17-09-2018 		edition.	5	,		
Approval : Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Board Academic Council Res. No. 93.7(C) Dated: 17-09-2018		• 3. John J. Craig. Introduction to R	obotics: Mechanics	and Control. Latest		
Approval:Board of Studies Advanced Studies and Research Board Academic CouncilRes. No. 3.1 Res. No. 3.1Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018		edition.				
Advanced Studies and Research Board Academic Council Res. No. 5.1 Dated: 27-08-2018 Res.No. 151.18(a) Dated: 04-09-2018 Res. No. 93.7(C) Dated: 17-09-2018	Annroval	Poord of Studios	Pag No 21	Datad: 27 09 2019		
Academic Council Res. No. 191.16(a) Dated: 04-09-2018 Res. No. 93.7(C) Dated: 17-09-2018	Approval :	Advanced Studies and Desearch Board	Res No 151 18(a)	Dated: $27-00-2010$		
		Academic Council	Res. No. $93.7(C)$	Dated: 17-09-2018		

fitle of Subject: DATA ACQUISITION AND CONTROL [MTS-602]						
Disciplines	: M.E. Mechatronic Engin	eering				
Semester	: 1 st					
Effective	: 19 ME-MTS Batch & O	nwards				
Credit hours	: 03					
Minimum Contact hours : 42						
Assessment	: 10% Sessional Work.	30% Mid Semester	Examinations, 60%			
110000000000000000000000000000000000000	Final Examinations		2			
Marks	: 100					
Aim :	To provide knowledge of data acquisi	tion and control nec	essary to develop a			
	measurement and control system.					
Objectives :	1. To develop an understanding of	modern data acquisit	ion techniques.			
-	2. To give detailed explanation of signal conditioning circuits alon	passive and active e	lectrical transducers,			
	2 To provide on exempions of dist	g with digital internation	and digital controllor			
	5. To provide an overview of digi	tai control systems a	and digital controller			
Contonts .	Ucsign. Introduction to date acquisition:					
Contents :	Data acquisition fundamentals needs device	20				
	Passive and active electrical transducers.					
	Passive: Principles and types of resistive inc	luctive and canacitive t	ransducers			
	Active: Piezoelectric magnetostrictive nho	toelectric transducers				
	Signal conditioning circuits:					
	Analog signal conditioning, digital signal conditioning					
	Digital interfacing:	C				
	Input/Output Subsystems and Registers, Inp	ut/Output Mapping, Int	erfacing Using Polling			
	or Interrupts, The Parallel I/O Subsystem, Se	erial Systems, Analog/I	Digital I/O Subsystems,			
	I/O Subsystem Registers, Interface Standard	s				
	Data communication and networks:					
	Data communications and networks for	modern instrumentation	on and control, smart			
	instrumentation systems, serial and paralle	l communications, erro	or detection, Industrial			
	protocols	protocols				
	ADC, DAC, timers and counters:					
	Sampling, quantization, dithering, analog to digital and digital to analog conversion					
	Digital measurements and control programming for real time systems:					
	introduction to real time system hardware and software, digital measurement					
	Introduction to digital control systems.					
	Close loop digital control systems, system time response. Stability analysis techniques					
	Digital controller design					
	Control system specifications. Compensation (Lag and Lead). PID Controller design					
	Design by root locus					
Recommended	• DVS Murty, Transducers and Instrum	entation, Latest edition				
Books :	• C. L. Phillips and H. T. Nagle, Digital control system analysis and design. Latest					
	edition					
	Curtis D Johnson, Process Control Instrumentation Technology, Latest edition					
	• Robert B. Northrop, Instrumentation a	nd measurements, Late	st edition.			
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018			
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018			
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018			

Title of Subject	: IMAGE PROCESSING FC	: IMAGE PROCESSING FOR INTELLIGENT SYSTEMS [MTS-603] : M.E. Mechatronic Engineering				
Disciplines	: M.E. Mechatronic Engin					
Semester	$: 2^{nd}$					
Effective	: 19 ME-MTS Batch & Or	nwards				
Credit hours	: 03					
Minimum Cont	act hours : 42					
Assessment	: 10% Sessional Work, 30 Examinations.	% Mid Semester Exa	ninations, 60% Final			
Marks	: 100					
Aim :	To develop the image processing technique	es for intelligent systems	3.			
Objectives :	1. This course presents the theory and	practice of digital ima	age processing with Matlab.			
·	 Numerous examples and practical har One major topic of image processing discussion of the basic theoretical imaging problems 	ous examples and practical hands-on exercises are included in the course. ajor topic of image processing is covered in every lecture, typically consists of a sion of the basic theoretical concepts and some examples illustrating practical				
	 The course will also deal with the soccer environment. 	application of the tech	niques in a simulated robot			
Contents :	Introduction to Image Processing					
	Application areas of Image Processing, Components of Image Processing System Image Processing Fundamentals					
	Image Sensing and Acquisition, Image Sampling and Quantization, Relationships between					
	Pixels, Linear and Non-Linear Operations Image Enhancement in Spatial Domain Basic Grey Level Transformations, Histogram Processing, Enhancement using Arithmetic/Logic Operations, Smoothing Spatial Filters, Sharpening Spatial Filters Image Enhancement in Frequency Domain					
	Introduction to Fourier Transform Sr	Image Enhancement in Frequency Domain				
	Frequency Domain Filters Homomorphic	Filtering	Joinani Priters, Sharpening			
	Image Restoration	rittering				
	Noise Models, Restoration in the Presenc	e of Noise. Periodic No	bise Reduction by Frequency			
	Domain Filtering, Linear Position-Invaria	ant Degradations, Estim	ating Degradation Function,			
	Inverse Filtering, Minimum Mean Square	Error Filtering, Constrai	ned Least Squares Filtering			
	Geometric transformations: Spatial Transformations, Grey-Level Interpolation					
	Colour Image Processing		-			
	Colour Models, Colour Transformations, Smoothing and Sharpening, Colour Segmentation					
	Image compression					
	Image Compression Models, Elements of Information Theory, Lossy Compression, Lossless					
	Compression					
	Case studies pertaining to intelligent systems					
	Eage Detection, Thresholding, Object Recognition					
	implementation of techniques in Kobot s	soccer and manufactur	ring environment			
Recommended	• R C Gonzalez and R F woods Digi	tal Image Processing La	atest edition			
Books :	 R. C. Gonzalez, R. E. Woods, Digit R. C. Gonzalez, R. E. Woods and S.L. Processing using MATLAB, Latest ed 	Eddins, Additional read	ings: Digital Image			
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018			
-	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018			
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018			

INSTITU	JTE OF INFORMATION AND COMN	IUNICATION TEC	CHNOLOGIES		
Title of Subject	: ADVANCED EMBEDD	DED SYSTEMS [MT	S-604]		
Disciplines	: M.E. Mechatronic Engineering				
Semester	\mathbf{r} : 2^{nd}				
Effective	: 19 ME-MTS Batch & Or	nwards			
Credit hours	: 03				
Minimum Cont	act hours : 47				
Assessment	· 10% Sessional Work	30% Mid Semester	Examinations 60%		
Assessment	Final Examinations	5070 Wild Semester	Examinations, 0070		
Manks	\cdot 100				
IVIAI KS	. 100				
Aim:	The course is intended to give detailed memory access, programming of em	explanation of proce bedded systems an	ssor architecture and design, d integration of embedded		
Objectives:	 This course is designed to develop a An overview of programmable log 	an understanding of n ic devices and syster	nodern embedded systems. n on chip will also be given		
	along with IC fabrication and design	n challenges.			
Contents:	Introduction to embedded systems: D	esign challenge - opt	imizing design metrics		
	Hardware architecture for embedded	d systems: Processon	technology, IC technology,		
	Design Technology				
	Single purpose processors:				
	Transistors and logic gates, Flip-flops, C	Custom single-purpos	e processor design, RT-level		
	custom single-purpose processor design				
	General purpose processors: Basic	architecture, Oper	ration, Programmer's view,		
	Development environment,	-			
	Application specific processors:	Application-specific	instruction-set processors,		
	Selection of Microprocessor	11 1	1		
	Programmable logic devices:				
	Programmable array logic (PAI)	Programmable logi	ic array (PLA) complex		
	Programming logic device (CPLD)	i logialilitable logi	ie anay (1 L/1), complex		
	Application Specific Integrated Circu	the (ASIC).			
	Application Specific Integrated Circu	IIS (ASIC):	CA ASIC Flores Front and		
	Chip Design Styles, Macro Modules	, Gale Arrays, FPC	JA, ASIC Flow, Front-end		
	Verilog, Back-end, Clock Edge triggere	d Design			
	Field Programmable Gate Arrays (FF	'GA)			
	Protocols, Embedded Linux, Middlewar	mbedded Operating	Systems, Resource Access		
	Introduction to development environ	ment: FPGA develop	ment kit (Spartan-III)		
	Introduction to Verilog	-			
	Synthesis and HDLs, Synthesis and	Mapping for FPGA	, Verilog Module, Verilog		
	Registers, Case Statement, Advantages	and Disadvantages of	Verilog, Priority Logic		
	Development of various applications:	Mux, Demux, counte	ers, registers, ALU etc.		
	1 11	, ,	, ,		
Recommended	• Dr David A Patterson and Dr Paul	Hennessev Comput	er Architecture A		
Books:	Quantitative approach Latest edition	n			
	• Frank Vahid& Tony D Givarigis F	mbedded System De	sign: A unified		
	• Hank Vande Tony D. Olvarigis, E	tost adition	sign. A unned		
	D Marrie del Esste del Sector De				
	• P. Marwedel, Embedded System De	sign. Hardware/ Son	ware System, Latest edition.		
	• Pong P. Chu, FPGA prototyping by VHDL examples: Xilinx Spartan-3 version,				
	Latest edition.				
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018		
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018		
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018		

Title of Subject Disciplines Semester Effective Credit hours Minimum Conta Assessment	t : MACHINE LEARNING [MTS-612] : M.E. Mechatronic Engineering : 3 rd : 19 ME-MTS Batch & Onwards : 03 tact hours : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations.			
Marks	: 100			
Aim : Objectives :	 The course will give the student learning methods and formal under 1. This course provides a broad pattern recognition. The underlying theme in the foundation for most of the method. 	the ideas and intuition b erstanding of how, why, introduction to machine course is statistical infer thods covered	whind modern machine and when they work. learning and statistical rence as it provides the	
Contents :	Supervised Learning Basic Concepts, Review of Linea Learning, Logistic Regression, Ge discriminant analysis. Naive Bayo Fine Tuning Supervised Learni Bias/variance trade-off, Model se debugging learning algorithms, C Deep Learning NN architecture, Forward/Back p optimization techniques Unsupervised Learning Clustering, K-Means, Principal C Reinforcement Learning MDPs. Bellman equations, Value regulation (LQR), Q-learning. Va Adversarial Networks (GANs), A	r Algebra and Probabilit enerative learning algori es, Support Vector Mach ng lection and feature selec onvex Optimization ropagation, Vectorizatio omponent Analysis (PC. iteration and policy itera- lue function approximat dversarial machine learn	y, Supervised thms. Gaussian ines tion, Evaluating and n and Other A) ation, Linear quadratic ion, Generative	
Recommended Books :	 Christopher M. Bishop, Patteredition. Kevin P. Murphy, Machine Ledition. Ian H. Witten, Eibe Frank, M Practical Machine Learning T Trevor Hastie, Robert Tibshin Statistical Learning, Latest education 	rn Recognition and Mach earning A Probabilistic A ark A. Hall, Christopher Cools and Techniques, La cani and Jerome Friedma lition.	hine Learning, Latest Approach, Latest J. Pal ,Data Mining: atest edition. n, The Elements of	
Approval :	Board of Studies Advanced Studies and Research Boa Academic Council	Res. No. 3.1 rd Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018	

Title of Subj Disciplines Semester Effective Credit hours Minimum Co Assessment Marks	ect ontact hours	 : ARTIFICIAL INTELLIGENCE [MTS-608] : M.E. Mechatronic Engineering : 3rd : 19 ME-MTS Batch & Onwards : 03 : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100
Aim:	To desig	n a knowledge-based system.
Objectives:	 To Categoriz implement se To understar processes and 	ze an AI problem based on its characteristics and its constraints and earch and adversarial algorithms. and mathematical models such as belief networks and Markov decision d apply them to a range of AI problems.
Contents :	Introduction Introduction to A Machine Lean Stochastic Grad Neighbors, Gene Search Algorit Consistent Heur Markov Decisio Policy evaluatio learning, Mon approximation, I Game Playing Minimax, expec Learning, Game Constraint Sati Factor graphs, I local search, Con Bayesian Networks, Laplat Logic: Syntax Resolution.	Artificial Intelligence and its Scope. ming:Linear Regression, Logistic Regression, Loss Minimization, dient Descent,Features and Non-Linearity,Neural Networks, Nearest eralization, Unsupervised Learning, K-Means, Recurrent Neural Networks hms: Tree Search, Dynamic Programming, Uniform Cost Search, A*, istics on Process n, policy improvement, Policy iteration, value iteration, Reinforcement te Carlo, SARSA, Q-learning, Exploration/exploitation, function Deep reinforcement learning etimax, Evaluation functions, Alpha-beta pruning, Temporal Difference Theory sfaction Problems: Backtracking search, Dynamic ordering, arc consistency, Beam search, nditional independence, variable elimination Porks: Bayesian inference, Marginal independence, Hidden Markov rd-backward, Gibbs sampling, Particle filtering, Learning Bayesian ce smoothing, Expectation Maximization versus semantics, Propositional logic, Horn clauses, First-order logic,
Recommend Books	ed • Stuar : Lates • Daph Princ • Richa Introo • Trev Statis • Edwa	t Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, t edition. ne Koller and Nir Friedman, Probabilistic Graphical Models: iples and Techniques, Latest edition. urd S. Sutton and Andrew G. Barto, Reinforcement Learning: An fuction, Latest edition. or Hastie, Robert Tibshirani, and Jerome Friedman, he Elements of tical Learning: Data Mining, Inference, and Prediction, Latest edition, ard Tsang, Foundations of Constraint Satisfaction, Latest edition.

Approval	:	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
		Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
		Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject	Subject : SENSORS AND SENSING TECHNOLOGY [MTS-605]			
Disciplines	isciplines : M.E. Mechatronic Engineering			
Semester : 1 st				
Effective : 19 ME-MTS Batch & Onwards				
Credit hours : 03				
Minimum Contact hours : 42				
Assessment	: 10% Sessional Work 30% Mid Semester Examinations 60%			
11550555110110	Final Examinations			
Marks	: 100			
Aim:	To imart the knowledge required for developing sensing systems.			
Objectives:	1. Introduces the fundamental issues in sensing and various sensor technologies			
	including motion sensors, velocity sensors, GPS sensors, acoustic sensors,			
	light and image sensors, and range sensors.			
	2. Also demonstrates sensor technologies using a system approach to show how			
	they can be integrated into a complete digital system.			
Contents	Measurements: combining multiple signal and noise sources			
:	Measurements involving multiple sensor inputs, effect of noise on measurements,			
	noise identification and filtration techniques, sensor characteristics.			
	Data acquisition: getting signals to computers			
	Sensors, signals and systems, data acquisition software and hardware			
	Light and image sensors: Photodiodes, phototransistor, photo resistors, CCD			
	and CMOS imaging sensors			
	Sound sensing: Resistive, condenser, fiber-optic, piezoelectric, electret microphones, solid-state acoustic detectors			
	Touch sensing: Switch sensors, piezoelectric sensors, piezo-resistive sensors,			
	MEMS sensors, Capacitive touch sensors, Acoustic touch sensors			
	Navigation sensing: Sensors used for navigation, sensor fusion for navigation			
	Sensing and security: Sensors used for security, home and personal security			
	sensors, Multi-component security systems			
	People sensing: Optoelectronic motion detectors, optical presence sensors,			
	pressure gradient sensors.			
D				
Recommended	• Sen Gupta, Smart Sensors and Sensing Technology, Latest edition.			
BOOKS	• Krzysztof Iniewski, Optical, Acoustic, Magnetic, and Mechanical Sensor			
:	Technologies, Latest edition.			
	• Jacob Fraden, Handbook of modern sensors: physics, design and applications,			
	Latest edition.			
	Jon S. Wilson, Sensor Technology Handbook, Latest edition.			
	Ghenadii Korotcenkov, Chemical Sensors Comprehensive Sensor			
	Technologies, Latest edition.			
Approvel :	Board of Studies Pag No. 2.1 Detad: 27.09.2019			
Appioval :	Advanced Studies and Persentel Roard Res. No. 5.1 Dated: 04.00.2019			
	Auvalueu suules allu Kestalell Doalu Kest No.151.16(a) Daled: $04-09-2018$ Academic Council Deal No. 02.7(C) Dated: 17.00.2019			
	Academic Council Kes. No. 95. /(C) Dated: 1/-09-2018			

Title of Subject Disciplines Semester Effective Credit hours Minimum Cont Assessment Marks	: S ⁷ : M : 2 ⁿ : 19 : 03 act hours : 42 : 1 Fin : 10	OCHASTIC SYSTEM .E. Mechatronic Engind ME-MTS Batch & On ME-MTS Batch & On Sessional Work, al Examinations.	MS [MTS-606] heering nwards 30% Mid Semester	Examinations, 60%
Aim: Objectives:	To develop and e 1. To analy 2. To evalu	valuate stochastic mod se the transient and ste ate the performance of	lels. ady state behaviour o a variety of queueing	f stochastic systems.
Contents:	Introduction: St waves, Pinging I speculation. Stochastic simu Laplace's rule probabilities, Ga Monte Ca Stochastic illust models Boltzmar traveling salesmar radar Discrete time pi Martingales, Top methods, Nonline Continuous tim Processes, Piecer linear jump di Processes on ma differential calcu chart spaces, an graphs, and cirr Newton's second models, Gamblin	abilizing populations, abilizing populations, nackers, Signal process alation: Inversion ar of successions, Fr ussian updates, Conju arlo integration rations: Stochastic pro- m-Gibbs measures, Isi un model, Filtering and rocesses: Markov cha ological aspects, Para- ear filtering models, N e processes: Poisson wise deterministic pro- ffusion processes, S anifolds: Differential lus on manifolds, Para alytical aspects, Prot- cle), Iterated random I law of motion, Lang g, ranking and control,	The traps of reinfor ssing and population and rejection technic agmentation and o agate priors, Spatial a, Markov becesses, Markov chai ag model, Sherringto d statistical learning, ins, Functional Anal meter Estimation, M farkov chain restricti processes, Morkov becesses, Diffusion pro- biochastic Analysis, geometry and Project ametrizations and chai otype manifolds, Ra functions, Molecul gevin diffusion proce Mathematical Finance	cement, Surfing Google's dynamics, the theory of pue, Bayesian inference, coagulation, Conditional Poisson point processes, chain model. n models, Black-box type on-Kirkpatrick model, The Bayes' formula, Singer's model. ysis, Stochastic Analysis, arkov Chain Monte Carlo ons, Kalman-Bucy filters. Chain embeddings, Jump ocesses, Linear and Non- Path space measures, tion operators, Stochastic urts, Stochastic calculus in andom walk on (lattices, lar dynamics simulation, sses. Dynamic population ce.
Recommended Books :	 M. Scott, Ap Kaddour Na Optimization Athanasios O Stochastic Pr Syouji Najar Optimization L. L. Faulkn 	plied Stochastic Proces jim, Enso Ikonen, Ait- and Analysis, Latest E Christou Micheas, Theo ocesses and Inference, nurs, Toshio Nakagaw and Applications, Late er, "Stochastic Process	sses in science and en Kadi Daoud, Stochast Edition. Dry of Stochastic Obje Latest Edition. a, Stochastic Reliabil est Edition. ses from Applications	gineering, Latest Edition tic Processes Estimation, ects Probability, ity Modeling, to Theory, Latest Edition
Approval :	Board of Studies Advanced Studies Academic Counci	and Research Board l	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018

Fitle of Subject: MOTION PLANNING FOR MOBILE ROBOTS [MTS-609]Disciplines: M.E. Mechatronic EngineeringSemester: 2 nd Effective: 19 ME-MTS Batch & OnwardsCredit hours: 03Winimum Contact hours: 42Assessment: 10% Sessional Work, 30% Mid Semester Examinations, 60%Warks: 100			
Aim	To develop the motion planning systems for mobile robots.		
: Objectives :	 This course is designed to study and enable the mobile robots to automatically compute their motions from high-level descriptions of tasks and models acquired through sensing. It will deal primarily with algorithmic issues and discuss how we can approach the three key issues in mobile robotics i.e. mapping, localization and path planning 		
Contents :	 planning. An overview of concepts in robot motion planning. Sensor-Based Motion Planning Algorithms, The "Bug" algorithms, the Tangent-Bug algorithm and Implementation The classical motion planning paradigms: The potential functions, The roadmaps, The cellular decompositions The sampling-based algorithms: The probabilistic roadmaps, Single query sampling-based planners Map making and SLAM: The Kalman filter, The SLAM problem, The Bayesian approaches to map making Non-holonomic drive systems: The types of drive systems, the legged robots, the crawling robots, Trajectory planning for non-holonomic systems Motion planning for multiple robots Notion of configuration x time space, Mapping of moving obstacles in configuration x time space, Centralized vs. decoupled planning Decoupled planning techniques: Valority twing anordination diagram prioritized planning 		
Recommended Books :	 Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, Principles of Robot Motion, Theory Algorithms and Implementations, Latest Edition. Sebastian Thrun, Probabilistic Robotics, Latest Edition. Spyros G. Tzafestas, Introduction to Mobile Robot Control, Latest Edition. Nasser Sadati, Guy A. Dumont, Kaveh Akbari Hamed and William A. Gruver, Hybrid Control and Motion Planning of Dynamical Legged Locomotion, Latest Edition. 		
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018		

Title of Subj	tle of Subject : ADVANCED MANUFACTURING DESIGN TECHNIQUES [MTS-610]			
Disciplines		: M.E. Mechatronic Engin	leering	
Semester		: 1 st	8	
Effective		: 19 ME-MTS Batch & Or	nwards	
Credit hours		: 03		
Minimum Co	ontact hours	: 42		
Assessment		: 10% Sessional Work,	30% Mid Semester	Examinations, 60%
Marks		Final Examinations. : 100		
Aim:	This course will have emerged to	take a detailed look at mos achieve higher quality and	t of the Advanced Maproductivity.	anufacturing Techniques that
Objectives:	1. It will enable technologies, change to be	le the students to integ equipment and people in predicted.	rate a wide range a flexible manner t	of manufacturing methods, o accommodate the rates of
	2. It will fulfil processes an management	the need to exploit de nd computer-based techn	veloping technologie niques with efficier	es, advanced manufacturing nt operation and effective
Contents:	Introduction			
	Automation and versus Discrete components, Dig Engineering Ana CIM: Elements Material Hand Equipment, Mat Storage Systems Manufacturing Manufacturing S Automated Asse a. Optical Inspec Manufacturing a. Uses of CAI b. Process P Manufacturing e. Micro/ Nano f. Rapid Protot	Control Technologies ov Control, Computer Process gital to Analogue Converted lysis of NC Positioning Sy of CIM, Elements of Manu ling and Identification erial Transport Systems (I , Automatic Data Capture Systems: Single Station re ystems embly Systems: Advanced etion techniques, b. Machi Support Systems: D/CAM in the production sy lanning and Concurrent d. Advanced Manufacturi Fabrication yping/Tooling , g. Virtue	verview, Industrial C ss Control, Sensors, ers and vice versa, C stems, Discrete Contr facturing, Implement Technologies: Over industrial Trucks, AC manufacturing cells, Inspection Technolo ne Vision ystem, Engineering , Lung ng Techniques	control Systems, Continuous Actuators and other control omputer Numerical Control, rol using PLCs and PCs ation of CIM view of Material handling GVs, Monorails), Automated Group Technology, Flexible gies ean Production and Agile h. Intelligent Manufacturing
	5			
Recommende Books	ed • Mikell I · Manufa • Mikell I and Sys • Yusuf A • Geoffre	P. Groover, Automation, Pr cturing, Latest Edition. P. Groover, Fundamentals of tems, Latest Edition. Iltintas, Manufacturing Au y Boothroyd, Assembly Au	roduction Systems and of Modern Manufactu tomation, Latest Editi utomation and Produc	d Computer Integrated uring, Materials, Processes, ion. et Design, Latest Edition.
Approval	Board of Stuc Advanced Stu Academic Co	lies Idies and Research Board uncil	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018

fitle of Subject : MACHINE VISION [MTS-611]				
Disciplines	: M.E. Mechatronic Engineering			
Semester	: 3 rd			
Effective	: 19 ME-MTS Batch & Onwards			
Credit hours	: 03			
Minimum Cont	act hours : 42			
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60%			
	Final Examinations.			
Marks	: 100			
Aim:	To understand algorithms for automated computer vision.			
Objectives:	1. To create mathematical models of images and objects and using these to perform inference.			
	2. To learn how to use these models to automatically find, segment and track			
	objects in scenes, perform face recognition and build three-dimensional models from images.			
Contents:	Introduction			
	Image Formation and Filtering			
	Geometric Transformations, Photometric Image Formation, Digital Camera			
	Sampling and Aliasing, Point Operators, Linear Filters, Weiner Filter,			
	Grouping and Fitting: Hough transform, RANSAC, Alignment, image stitching			
	Image segmentation: Acitve Contours, Region Splitting, Region Merging, Mean			
	Shift and Mode Finding			
	Texture analysis: Texel-Based Texture Descriptions, Quantitative Texture			
	Measures, Texture Segmentation,			
	Shape from shading			
	Object Modelling			
	Common Representations, True 3D Models versus View-Class Models, Physics-			
	based and Deformable Models			
	Visual Servoing			
	Camera Positioning, Direct/Indirect Visual Servoing, Poisition based and Image			
	based Visual Servoing, Features, Robot Differential Kinematics			
	Recognition			
	Understanding Optical Flow			
	Understanding, Optical Flow Multi frame Mation Estimation: Stored Vision			
	Ividiu-In and Ividium Estimation; Stered VISIOn Structure from Motion: Line Based and Plane Based Techniques			
	Structure from Motion: Line Based and Plane Based Techniques			
	techniques on manipulators and mobile robots and Manufacturing			
Recommended	Richard Szeliski, Computer Vision: Algorithms and Applications, Latest edition			
Books :	 Jean Ponce, Computer Vision a Modern Approach, Latest edition. 			
Approval :	Board of Studies Res. No. 3.1 Dated: 27-08-2018 Advanced Studies and Research Reserved Res. No. 151 18(a) Dated: 04 00 2018			
	Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018			

Title of Subject Disciplines Semester		: PRECISION MANUFACTURING SYSTEMS [MTS-613] : M.E. Mechatronic Engineering : 1 st			
Effective		: 19 ME-MTS Batch & O	nwards		
Credit hours		: 03			
Minimum Cont	act hours	: 42			
Assessment		: 10% Sessional Work,	30% Mid Semester	Examinations, 60%	
Marks		Final Examinations. : 100			
Aim	To provide	the knowledge of various	techniques used in pr	recision manufacturing	
: Objectives	1 To gair	an in-denth understandi	ng of micro and Na	no scale conventional	
:	manufac characte	eturing techniques, main rization and measurement	terial properties, st techniques.	scaling laws, latest	
	2. To be fabricat	conversant with state-of- on.	the-art equipment a	nd processes used in	
Contents :	Manufactur nano, opto equipment, j Thin film d	ing engineering in mic and micro scale manufa process and operational issues eposition processes and processes are processes and processes are	roelectronics: Micra acturing, Examinatio ues and linkages to bu atterning	o electro mechanical, n of systems design, siness strategies	
	Sputtering, I	Evaporation, Physical Vapo	or Deposition, Chemic	al Vapor Deposition	
	Removal processes Micro-machining Processes, Wet Bulk Micro-Machining, dry etching, wet etching, Plasma etching, ion-enhanced etching, Vacuum engineering, creating vacuum,				
	Vacuum De Vapor.	eposited Coatings, Pressu	re Measurement, Pu	mping, Leaks, Water	
	Characteriz Scattering T Combination techniques, 1	cation techniques Techniques, Diffusion and n of In Situ and Ex, Situ Te Packaging, assembly, and s	Mass Transfer, Cale conniques, Imaging, n elf-assembly	lorimetric Techniques, netrology and profiling	
	Contamina	tion control and Clean ro	m practices		
	Contaminan decontamina	ts Testing methods, Clea tion, Personal hygiene and	anrooms and clean personal responsibili	zones, Cleaning and ty	
Recommended Books :	Marc J.M. Koc Micro-P	Madou, Microfabrication a and T. Ozel, Micro-Manufa roducts, Latest Edition.	nd Nanotechnology, I acturing: Design and I	Latest Edition. Manufacturing of	
	 Koji Sug Latest E 	gioka, Michel Meunier, Alt dition.	perto Piqu, Laser Prec	ision Microfabrication,	
	• Charles Latest E	A. Bishop, Jr., Vacuum De dition.	position onto Webs, H	Films, And Foils,	
	 Nick Ka Characte 	nellopoulos, Nanoporous M erization, Modeling, and Pr	Materials Advanced To ocessing, Latest Editi	echniques for on.	
Approval :	Board of Stu Advanced St Academic Co	dies udies and Research Board ouncil	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018	

Title of Subject	: OPTIMIZATION OF ENGINEERING SYSTEMS [MTS-614]	
Disciplines	: M.E. Mechatronic Engineering	
Semester	: 2 nd	
Effective	: 19 ME-MTS Batch & Onwards	
Credit hours	: 03	
Minimum Contact hours	: 42	
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60%	
	Final Examinations.	
Marks	· 100	

Aim:

To provide the knowledge of optimized techniques for manufacturing systems.

Objectives:

1. Student can apply off-the-shelf software to solve problems, analyse and algorithms with a number of case studies.

2. The student will able to develop solution of simultaneous equations and non-linear optimization problems.

Contents: Introduction

Problems, algorithms and solutions, Decision vector, simultaneous equations, Optimization, Direct and Iterative Algorithms, Solution of Simultaneous equations and optimization problem, Sensitivity and large channel analysis, Transformation of problems: Transformation of objective, Penalty and Barrier functions, Constraints,

Linear simultaneous equations

Case studies: Analysis of Direct Current Linear Circuit, Control of Discrete-Time Linear System, Algorithms: Inversion of coefficient matrix, solution of Triangular systems, Solution of Square Non-Singular systems, Symmetric coefficient matrix, Sparsity techniques, Ill-conditioning, Non-square systems.

Non-linear simultaneous equations

Case Studies: Analysis of Non-linear DC circuit, Analysis of electric power system, Algorithms: Newton-Raphson method, Variations of Newton-Raphson method, Local convergence of iterative methods, Globalization procedures, Sensitivity and large change analysis **Unconstrained optimization:** Case studies: Multi-variate linear regression, Power system state estimation, Algorithms, Optimality conditions, Approaches to finding minimizers, Sensitivity, Solution of the case studies.

Equality-constrained optimization

Case studies: Least-cost production, Power system state estimation with zero injection buses, Algorithms for linear constraints: Optimality conditions, Convex problems, Approaches to finding minimizers, Sensitivity, Solution of the least-cost production case study, Algorithms for non-linear constraints: Geometry and analysis of constraints, Optimality conditions, Finding Minimizers,

Inequality-constrained optimization

Case studies: Least-cost production with capacity constraints, Optimal routing in a data communications network, Least absolute value estimation, Optimal margin pattern classification, Sizing of interconnects in integrated circuits, Optimal power flow

Algorithms for non-negativity constraints: Optimality conditions, Convex problems, Approaches to finding minimizers: active set method, Approaches to finding minimizers: interior point algorithm,

Recommended • Ross Baldick, Applied Optimization: Formulation and Algorithms for Engineering Systems, Latest edition.

• S.S Rao, Engineering Optimization: Theory and Practice, Latest edition.

Approval	:	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
		Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
		Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject Disciplines Semester Effective Credit hours Minimum Cont Assessment Marks	 : INDUSTRIAL CONTROL TECHNOLOGY [MTS-615] : M.E. Mechatronic Engineering : 2nd : 19 ME-MTS Batch & Onwards : 03 : 03 : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100 			
Aim :	To teach the industrial controllers and controlling techniques.			
Objectives :	 To understand modern control technology and the theoretical fundamentals of process control, logic, binary operations, digital data conversion and discrete control. To develop PLC programs and applications to solve practical control problems. 			
Contents :	 Discrete control systems: introduction, fundamental concepts, relay control, PLC. Fundamental logic: concepts connected to discrete control systems Introduction to the linear control systems: Discrete control systems with PLC: Discrete I/O Systems, Remote I/O Systems, PLC instruction and Types of Discrete inputs, Discrete Outputs, Discrete Bypass, and Interpreting. PLC programming: Ladder Diagram Format, Ladder Relay Instructions, Ladder Relay Programming, Instructions for Timers and Counters. Lead and lag compensation: SCADA systems: Supervisory Control and Data Acquisition, Sociological and Cultural Aspects, Threat Vectors, Application and Risk Management, SCADA economics CNC Programming: Cartesian Coordinate System, Machines Using CNC, Programming Systems, Point-to-Point or Continuous Path, Point-to-Point Positioning Advanced CNC programming, CNC Programming for Turning. Concept of CIM, Automated Storage and Retrieval System, Programming of 			
Recommended Books :	 L. A. Bryan, E. A. Bryan, Programmable Controllers Theory and Implementation, Latest Edition. Peng Zhang, Advanced Industrial Control Technology, Latest Edition. W. Bolton, Programmable Logic Controller (PLC), Latest Edition. John R. Hackworth, Frederick D. Hackworth, Jr., Programmable Logic Controllers: Programming Methods and Applications, Latest Edition. Frank D. Petruzella., Programmable Logic Controllers, Latest Edition. Stuart A. Boyer, SCADA: Supervisory Control and Data Acquisition, Latest Edition. 			
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018			

Academic Council

Res. No. 93.7(C) Dated: 17-09-2018

Title of Subject Disciplines	: FUZ : M.E.	ZY CONTROL SYS Mechatronic Engin	STEMS [MTS-616] eering	
Semester	: 3 rd			
Effective	: 19 M	E-MTS Batch & Or	nwards	
Credit hours	: 03			
Minimum Cont	act hours : 42			
Assessment	: 10% Final	Sessional Work, Examinations.	30% Mid Semester	Examinations, 60%
Marks	: 100			
Aim:	To construct of nor	linear controllers fo	or challenging real-wo	orld applications.
Objectives:	 To gain fundam To implement 	ental understanding properties (e.g., sta	g of the dynamics of f ability) and verified	uzzy control systems mathematically before
	3. To evaluate the	e performance and	d comparative analy	rsis with conventional
Contents :	Introduction: Co Design	ventional Control	System Design, F	uzzy Control System
	Fuzzy Control:			
	Choosing Fuzzy C	ontroller Inputs and	l Outputs, Putting Co	ontrol Knowledge into
	Rule-Bases, Fuzzy	Quantification o	f Knowledge, Dete	ermining Conclusions,
	Converting Decisi	ons into Actions,	Graphical Depiction	n of Fuzzy Decision
	Making, Fuzzy S	ets, Fuzzy Logic,	and the Rule-Bas	e, Fuzzification, The
	Inference Mechani	sm, Defuzzification	, Design Example: T	he Inverted Pendulum,
	Real-Time Implem	entation Issues		
	Vibratian Damain	sign and Implement	ntation Debet Deleveine	Detetional Invented
	Pendulum, Machin	g for a Flexible e Scheduling, Fuzzy	Property Balancing a Decision-Making Sy	stems
	Nonlinear Analysi	\$ 	····· ··· ··· ··· ··· ··· ··· ··· ···	
	and the Circle Crit	erion, Analysis of S	Steady-State Tracking	g Error, Limitations of
	Eurry Identification	n and Estimation		
	Fuzzy Identification	n anu Estimation Data Least Squar	res Methods Gradier	nt Methods Extracting
	Rules from Data	Data, Least Squa	ies methods, oradier	it Methods, Extracting
	Perspectives on Fi	izzy Control		
	Fuzzy Versus Con	ventional Control.	Relationships Betwee	en Fuzzy Systems and
	Neural Networks, (Benetic Algorithms	for Fuzzy System De	sign and Tuning
Recommended	• Kevin M. Passi	no and Stephen Yu	rkovich, Fuzzy Contro	ol, Latest edition.
Books :	Guanrong Che	n, Trung Tat Pham,	Fuzzy Sets, Fuzzy L	ogic and Fuzzy
	Control System	s, Latest edition.		с ,
	Zdenko Kovac Applications, I	ic, Stjepan Bogdan, atest edition.	Fuzzy Controller De	sign: Theory and
				D + 1 07 00 0010
Approval :	Board of Studies	d Dagaanah Daga 1	Kes. No. 3.1	Dated: 27-08-2018
	Auvancea Studies an	u Kesearch Board	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	Dated: 04-09-2018
	Academic Council		100.33.7(0)	Dateu. 1/-09-2018

Title of Subject	: OPTIMAL CONTROL [MTS-617]		
Disciplines : M.E. Mechatronic Engineering				
Semester : 3 rd				
Effective : 19 ME-MTS Batch & Onwards				
Credit hours				
Minimum Cont	cact hours : 42			
Assessment	: 10% Sessional Work,	30% Mid Semester	Examinations, 60%	
	Final Examinations.			
Marks	: 100			
Aim	To understand different forms of per	rformance measures	as applied to variety of	
:	optimal control problems.			
Objectives :	1. Have complete familiarity w minimum principle	vith Calculus of Va	ariation and Pontryagin's	
•	2 Understand Dynamic Program	ming and Hamilton-I	lacobi-Bellman	
	3. Apply computational procedur	e to solve optimal co	ntrol problems.	
Contents	System Description and Performance	e Evaluation:	F	
:	Introduction. Problem formulation.	State variable ren	presentation of systems.	
	Performance Measure	1		
	Dynamic Programming:			
	Dynamic Programming, Optimal Cor	ntrol Law, Principle	of Optimality, Dynamic	
	programming applied to Routing pro	blem, Optimal Cont	rol System, Interpolation,	
	Computational procedure for solving	control problems.	Hamilton-Jacobi-Bellman	
	equation. Continuous Linear Regulator	problems		
	Calculus of Variations and Pontryag	in's Minimum Prin	ciple	
	Calculus of Variations, Functional of	f single variable. Fu	inctions involving several	
	independent variables Constrained extrema Variational Approach to Optiv			
	Control Problems Necessary conditions for Optimal Control Poptryagin's Minin			
	Principle and State Inequality constraints Minimum Time problems Minimum			
	Control Effort problems			
	Iterative Techniques for Ontimal Control			
	Numerical Determination of Optim	al Trajectories Tv	vo-point boundary value	
	problems, Method of Steppest Descent	, variation of Externa	Ils, Quasilinearization	
Recommended	• Donald E. Kirk Optimal Control T	heory: An Introduction	on . Latest edition.	
Books :	• Eduardo D. Sontag. Mathemat	ical Control Theo	ry: Deterministic Finite	
	Dimensional Systems Latest edition	n		
	Robert F Stengel Stochastic Ont	imal Control: Theor	v and Application I atest	
	edition	initial Control. Theor	y and Application, Eatest	
	 Michael Athans Deter I Falls O 	ntimal Control: An I	Introduction to the Theory	
	and Its Applications, Latest editio	n.	nuoduction to the Theory	
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018	
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018	
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018	

Title of Subject	: KINEMATICS OF MOBILE ROBOTIC SYSTEMS [MTS-618]					
Disciplines : M.E. Mechatronic Engineering						
Semester	$:2^{\operatorname{He}}$					
Effective : 19 ME-MTS Batch & Onwards						
Credit hours	: 03					
Minimum Conta	act hours : 42					
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60%					
Marks	: 100					
Aim ·	To develop knowledge related to key localization techniques.					
Objectives	1. To impart knowledge of basic locomotion methods.					
:	2. To teach kinematics of legged and wheeled robots					
	3. To study the use of various sensors for perception and extract the features from the sensor data.					
Contents	Introduction					
:	Typical applications, key issues for locomotion					
	Locomotion with legs and wheels					
	Leg configurations and stability, examples of legged robot locomotion, design					
	space and case studies for wheeled locomotion					
	Mobile Robots Kinematics					
	Kinematics models and constraints, mobile robot maneuverability and workspace openloop and closed loop kinematic control					
	Perception					
	Sensors for mobile robots: wheel, heading, beacon, ranging, motion and vision					
	Uncertainty Representation: Statistical representation of uncertainty, error					
	Feature extraction Laser, ultrasonic and vision-based sensor feature extraction,					
	image based feature extraction					
	Localization					
	Introduction, odometry, Map representation, introduction to probabilistic map- based Markov localization, Kalman filter localization, autonomous map building.					
Recommended Books :	 Roland Siegwart and Illah Nourbakhsh, Introduction to Autonomous Mobile Robots, Latest edition. George Bekey, Autonomous Robots, latest edition. 					
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018					

Title of Subject Disciplines		: COGNITIVE ROBOTICS [MTS-619] : M.E. Mechatronic Engineering		
Semester		: 3 rd		
Effective		: 19 ME-MTS Batch & Onwards		
Credit hours		: 03		
Minimum Co	ontact hours	: 42		
Assessment		: 10% Sessional Work, 30% Mid Semester Examinations, 60%		
		Final Examinations.		
Marks		: 100		
Aim	To apply cognit	ion techniques to robots		
	1 11.	in the investigation of the constraint of the test of the constraint of the test of the constraint of the test		
Objectives	1. This course	is designed to study cognitive robotics that addresses the emerging field		
•	2 To design a	us systems possessing artificial reasoning skins.		
Contonts	2. 10 design a	System and apply algorithms and autonomy models		
	hased Program	ning		
:	based Programme Robots that Do of Configuratio Cell Decompo Probabilistic Ro Introduction to	effly Navigate: Kinodynamic and Randomized Path Planning, Review n Spaces, Visibility Graphs, Voronoi Diagrams, Potential Fields, and sition, Kino-dynamic Planning, Planning with Moving Obstacles, badmaps (PRMs), Rapidly Exploring Random Trees (RRTs)		
	Localization S	JAM Kalman Filter Large Scale SLAM Vision Based SLAM		
	Topological Ma	ns Hidden Markov Models (HMM) SIFT Vision based Localization		
	Doducing Sta	to and Diagnosing Failure: Model based Diagnosis and Mode		
	Estimation Con	sistency based Diagnosis: Condidates Conflicts Diagnoses and Kernel		
	Diagnoses, Co	nflict Extraction and Candidate Generation, Mode Estimation and		
	Solving Ontim	agnosis, Active Flooling		
	Optimal Constr	aint Satisfaction Droblems, Constraint based A*, Conflict directed A*		
	Conflict Extract	int Satisfaction Problems, Constraint-based A, Connict-directed A,		
	Planning Com	non Nex Missions		
	Mission-level Planning, and S Uncertainty, S' Strong and Dyn Robots that P Universal Plan (MRP), Binary Planning and E Cognitive Gan Applied to Ches Particle Filters i Sensing and I Probabilistic C Methods, Langu Human Robot Multi-modal Co	 Task Planning, Partial Order Planning, Constraint-based Interval Simple Temporal Networks (STNs), Dynamic Plan Execution Under FNS, Dispatchable Networks and Dispatching Execution, STNUs, amic Controllability, Mixed Human Robotic Exploration lan on the Fly: Hidden State and Model-based Reactive Planning, ning, Structure Decomposition for Model-based Reactive Planning Decision Diagrams, Symbolic MRP, Continuous, Incremental Path cploration, Single Source Shortest Path, D*, LRTA* e Theory: Alpha-Beta and its Extensions, An Evolutionary Algorithm ss, Inductive Adversary Modeler, Particle Filters and their Applications, n SLAM in Fault Diagnosis Manipulating at the Cognitive Level: Visual Interpretation using Grammars, Statistical Parsing, Image Segmentation, Monte Carlo nage Learning Interaction: Working with and Learning from Humans as Partners, pommunication, Human-robot Teamwork, Socially Guided Learning 		

Recommend Books	led :	 Patnaik, Srikanta , Robot Cognit Mobile Robots Series, Latest editio Ronald Brachman and Hector J. Reasoning, Latest edition Raymond Reiter, Knowledge in A and Implementing Dynamical Syst 	 Patnaik, Srikanta , Robot Cognition and Navigation - An Experiment with Mobile Robots Series, Latest edition. Ronald Brachman and Hector J. Levesque, Knowledge Representation and Reasoning, Latest edition Raymond Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems, Latest edition. 			
Approval	:	Board of Studies Advanced Studies and Research Board Academic Council	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018		

Title of Subject	Subject : COMPUTATIONAL GEOMETRY [MTS-620]			
Disciplines	: M.E. Mechatronic Engineering			
Semester	: 3 rd			
Effective	: 19 ME-MTS Batch & Onwards			
Credit hours	: 03			
Minimum Conta	ct nours : 42			
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations.			
Marks	: 100			
Aim :	On completion of course, student will be able to implement libraries of geometric data structures and algorithms efficiently/accurately.			
Objectives :	 The course will contain review of basic algorithms and discussion of active research topics in the design and analysis of efficient algorithms and data structures for geometric problems with applications. To carryout point location search. 			
Contents :	Polygon Triangulation Art Gallery Theorems, Triangulation, Area of Polygons, Segment Intersection,			
	Trapezoidalization			
	Convex hulls in two and higher dimensions			
	Naïve Algorithms for Extreme Points, Graham's Algorithm, Incremental			
	Algorithm			
	Proximity problems			
	closest pair, closest point queries			
	Voronoi diagrams, Delaunay diagrams			
	Definitions and Basic Properties, Delaunay Triangulations, Connection to			
	Convex Hull, Geometric minimum spanning trees, traveling salesman problem			
	Arrangements of lines, hyperplanes; geometric duality, intersection problems;			
	Bentley-Ottmann sweep			
	Point location search Doint Location and Transzoidal Mana Randomized Incremental Algorithm			
	Point Location and Trapezoidal Maps, Kandonnized incremental Algorithm,			
	Degenerate Cases Parametric search randomization			
	Selected research topics in computational geometry. Selected application areas			
	one or two selected from computer graphics, manufacturing, robotics, GIS,			
	geometric optimization			
Recommended Books :	 Joseph O'Rourke ,Computational Geometry in C, Latest edition. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong, Computational Geometry: Algorithms and Applications, Latest edition. 			
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018			

Title of Subject : LINEAR CONTROL SYSTEMS [MTS-621]			521]		
Disciplines		: M.E. Mechatronic Engineering			
Semester		: 3 rd			
Effective		: 19 ME-MTS Batch & Onwards			
Credit hours		: 03			
Minimum Cont	act hours	: 42			
Assessment		: 10% Sessional W	ork, 30% Mid Semes	ster Examinations, 60%	
		Final Examinations	•		
Marks		: 100			
Aim:	To impart th	e knowledge of the lin	nitations on performan	ce of control systems	
Objectives	1. Design	of state-space controlle	ers; estimation filters; d	lynamic output feedback	
:	2. Model u	incertainty and robustn	ess		
Contents	Introductio	n			
:	Basic root l	ocus: analysis and exa	mples		
	Frequency	response methods: Co	ontrol design using Bo	de plots	
	state-space models: Introduction, developing state-space models based or transfer functions, State-space models: basic properties, System zeros and transfer function matrices, State-space model features.				
Controllability: Full-state feedback control, Pole placement approach LQ servo: Introduction, Open-loop and closed-loop estimators, Combined					
	LQ servo: I	mproving transient per	formance, Determinist	tic linear quadratic	
	regulator (L	QR), Linear quadratic	Gaussian (LQG)	-	
Recommended	• Frankli	n, Gene, J. David Pe	owell, and Abbas En	nami-Naeini, Feedback	
Books	Control	of Dynamic Systems,	Latest edition.		
:	• Astrom,	Karl, and Richard M	urray, Feedback Syste	ems: An Introduction for	
	Scientis	ts and Engineers, Lates	st edition.		
	• Van de	Vegte, John, Feedback	c Control Systems. , La	atest edition.	
Approval :	Board of Stu	dies	Res. No. 3.1	Dated: 27-08-2018	
	Advanced St	udies and Research Bo	oard Res. No.151.18	(a) Dated: 04-09-2018	
	Academic Co	ouncil	Res. No. 93.7(C	c) Dated: 17-09-2018	

Title of Subject	t : ADVANCED MEASUREMENT TECHNIQUES [MTS-622]				
Disciplines : M.E. Mechatronic Engineering					
Semester	emester : 3 rd				
Effective	ffective : 19 ME-MTS Batch & Onwards				
Credit hours : 03					
Minimum Cont	tact hours : 42				
Assessment	: 10% Sessional Work, 3	0% Mid Semester	Examinations, 60%		
	Final Examinations.				
Marks	: 100				
Aim	To develop the advanced measurement s	systems.			
: Objectives	1 To help students to gain an in-de	onth understanding	of basic measurement		
·	theory operating principle of mode	rn measurement tech	niques		
•	2 To be canable for practical measure	uring machines and	their applications in		
	advanced manufacturing	uning machines and	a men applications in		
Contents	Basics of measurement				
:	Measurement uncertainty, data analysis	and modeling			
	Displacement measurement				
	capacitive, inductive and magnetic sensors, Linear scales,				
	Interferometry				
	heterodyne and homodyne, their calibra	ation,			
	Surface metrology				
	stylus and optical Instrumentation, profi	le and areal Charact	erisation, Calibration,		
	Scanning probe microscopy				
	SPM dimensional metrology, Calibratio	n,			
	Materials metrology				
	General materials metrology, Energy beam techniques, Analytical techniques,				
	Low force and mass measurement	1 • .	1		
	Measurement methods for low forces, te	chniques to measur	e low mass		
	Coordinate measuring machines				
	Structure, probes, mutusensory measure	ng system			
Recommended	Connia I Dotson Fundamentals of	Dimongional Matra	lagy Latest adition		
Rooks ·	Nobou Suga and Pater Pollings	• Connie L Dotson, Fundamentals of Dimensional Metrology, Latest edition.			
DUUKS .	 Notion Suga and refer Kollings, Metrology Handbook: The Science of Measurement Latest edition 				
	 John F.W. Galver and C. Shotholt. Metrology for Engineers. Latest edition 				
	 John F.W. Galyer and C. Shotbolt, Metrology for Engineers, Latest edition. Anond K. Bowoor and V. A. Kulkomi. Materology and Magguerrants. Latest 				
	• Alland K. Dewool and V. A. Kulka	inin, wieuology and	i Measurements, Latest		
	Cutton				
Approval ·	Board of Studies	Res No 31	Dated: 27-08-2018		
- PProven v	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018		
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018		
		. ,			

Title of Subject Disciplines Semester Effective Credit hours Minimum Conta Assessment Marks	 COMPUTER INTEGRATED MANUFACTURING [MTS-623] M.E. Mechatronic Engineering 1st 19 ME-MTS Batch & Onwards 03 ct hours 42 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. 100
Aim:	The objective of this course is to develop an understanding of classical and state- of-the-art production systems, control systems, management technology, cost
Objectives:	 To develops an understanding of computer-integrated manufacturing (CIM) and its impact on productivity, product cost, and quality. To overview of computer technologies including computers, database and data collection, machine control, etc., as they to apply to factory management and factory floor operations. To integrate the manufacturing activities into a complete system and helps to enhance performance of manufacturing systems by applying different CIM concepts and tools.
Contents :	 Introduction Overview of computer integrated manufacturing (cim), importance of cim. Business perspectives for cim Business characteristics of cim systems, justifying investments. Human resource requirements Quality issues, implementation difficulties / analysis of manufacturing operations. Computers in manufacturing Peripherals, factory information systems (fis), group technology/ coding systems. Cellular manufacturing Facility layout, flexible manufacturing systems (fms). Product design Computer aided process planning (capp). Structure, probes, multisensory measuring system
Recommended Books :	 S Kant Vajpayee, Principles of Computer Integrated Manufacturing, Latest edition. Mikell P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Latest edition. Alan Weatherall, Computer Integrated Manufacturing, from fundamentals to implementation, Latest edition. K C Jain & Sanjay Jain, Principles of Automation and Advanced Manufacturing Systems, Latest edition.
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018

Title of Subj Disciplines Semester Effective Credit hours Minimum C Assessment Marks	ect s ontact hours	: ROBUST CONTROL [1 : M.E. Mechatronic Engin : 3 rd : 19 ME-MTS Batch & O : 03 : 42 : 10% Sessional Work, Final Examinations. : 100	MTS-624] neering mwards 30% Mid Semester	Examinations, 60%
Aim: Objectives:	The aim of this 1. To effective 2. To carry mo	subject is to teach the advances of the second seco	nced concepts of mult ist control	tivariable robust control.
Contents:	Review of Line Inversion Form Value Decomptor Review of Line Based Controlle H_2 and H_{∞} Sp Norms, Compute Internal Stability Feedback Struct RH $_{\infty}$, Weighted Constraints Uncertainty an Truncation, Free Gain Theorem Skewed Specific mu and mu Sy Stability and Pe Controller par All Stabilizing O H ₂ Optimal Co Extended LQR 2 Controllers, St Minimum Entrop	ear Algebra: Linear subsp ulas, Invariant Subspaces, osition ar Systems: Controllability rrs, Operations on Systems, aces: Hilbert Spaces, H ₂ ation of L _∞ and H _∞ Norms, ity, Performance Specificator ture, Well-Posedness of H H ₂ and H _∞ Performance, S and Robustness: Lyapunov quency-Weighted Balanced , Stability under Unstru- cations nthesis: General Framewo rformance, Overview of μ S ametrization: Existence o Controllers, Coprime Factor ntrol and H _∞ Control: Inter Problem, Guaranteed Stabi Simplified H ∞ Control F opy Controller, General H ₃	paces, Eigenvalues and Vector Norms and I y and Observability, C Multivariable System and H_{∞} Spaces, Con- ations and Limitation Feedback Loop, Cop Selection of Weightin V Equations, Model I Model Reduction, M ctured Uncertainties, rk for System Robust Synthesis f Stabilizing Controll rization Approach roduction to Regulato ility Margins of LQR Problem, Optimality $_{\infty}$ Solutions, H ₂ and I	nd Eigenvectors, Matrix Matrix Norms, Singular Observers and Observer- n Poles and Zeros nputation of L_2 and H_2 ns rime Factorization over g Functions, Analyticity Reduction by Balanced Iodel Uncertainty, Small, Robust Performance, tness, Structured Robust lers, Parameterization of r Problem, Standard and , Stability Margins of H and Limiting Behavior, H_{∞} Integral Control, H_{∞}
Recommend Books	 H_∞ Loop Shap Justification and ed • Kemin Geir E Theory: Sigurd Analysi 	bing: Robust Stabilization I Guidelines for H _∞ Loop S Zhou, Essentials of Robust . Dullerud and Fernando a convex approach, Latest Skogestad and Ian Postl s and Design, Latest edition	of Coprime Factor, haping Control, Latest edition G. Paganini, A Cou edition. ethwaite, Multivaria n.	Loop-Shaping Design, on. rse in Robust Control ble Feedback Control
Approval	: Board of Stu Advanced St Academic Co	dies udies and Research Board ouncil	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018

Title of Subject	: ADAPTIVE CONTROL [MTS-625]				
Disciplines	: M.E. Mechatronic Engineering				
Semester	: 3 rd				
Effective	: 19 ME-MTS Batch & Onwards				
Credit hours	: 03				
Minimum Cont	tact hours : 42				
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations	, 60%			
	Final Examinations.				
Marks	: 100				
Aim	The aim of this course is to impart the knowledge of design methods of	adaptive			
:	control.				
Objectives	1. To discuss peripherals of adaptive control.				
:	2. To apply adaptive control including parameter identification as to intelligent control as the extension, and robust control as the complet of adaptive control.	the core, ementary			
Contents	Introduction				
:	Identifier and Non-identifier based Adaptive Control				
	Parameter Identification: Continuous Time				
	Persistence of Excitation and Sufficiently Rich Inputs, Gradient Al	gorithms			
	based on Linear Model, Least Square Algorithms, Parameter Identificati	ased on Linear Model, Least Square Algorithms, Parameter Identification based			
	on DPM. Parameter Identification based on B-SPM, Robust P	arameter			
identification. State-space identifiers. Adaptive Observers					
	Continuous-Time Model Reference Adaptive Control				
Simple MRAC Schemes, MRC for SISO Plants, Direct MRAC					
	Unnormalized Adaptive Laws, Direct MRAC with Normalized Adaptive	ve Laws,			
	Indirect MRAC, Robust MRAC	,			
	Continuous-Time Adaptive Pole Placement Control				
	APPC schemes without Normalization, APPC Scheme: Polynomial App	roach,			
	APPC Scheme: State-Space Approach, Adaptive Linear Quadratic Contr	ol			
	Adaptive Control of Non-linear Systems				
	Feedback Linearization, Control of Lyapunov Functions, Backstepping,	Adaptie			
	Backstepping with Tuning Functions, Neuroadaptive Control	-			
Recommended	• Petros Ioannou, Baris Fidan, Adaptive Control Tutorial, Latest editi-	on.			
Books :	• Karl J. Astrom and Dr. Bjorn Wittenmark, Adaptive Control, Latest	edition.			
	• Landau, I.D., Lozano, R., M'Saad, M., Karimi, A, Adaptive	Control			
	Algorithms, Analysis and Applications, Latest edition.				
Approval :	Board of Studies Res. No. 3.1 Dated: 27-08	3-2018			
	Advanced Studies and Research Board Res. No.151.18(a) Dated: 04-09	-2018			
	Academic Council Res. No. 93.7(C) Dated: 17-09	-2018			

Title of Subject: MICRO ELECTRO MECHANICAL SYSTEMS [MTS-626]Disciplines: M.E. Mechatronic EngineeringSemester: 3 rd Effective: 19 ME-MTS Batch & OnwardsCredit hours: 03Minimum Contact hours: 42Assessment: 10% Sessional Work, 30% Mid Semester Examinations, 60Marks: 100			
Aim ·	This course deals with the fundamentals of Micro and nano electro mechanical systems.		
Objectives :	 To discuss challenges in fabrication using the proper grasp of dominant physical, chemical, and biological principles acting on the devices. The course offers insight in MEMS design principles, detailed fabrication techniques, and detailed analysis of processes involved in MEMS system implementation. To discuss about micro sensors, micro actuators and their modelling techniques are also part of this course. 		
 3. To discuss about micro sensors, micro actuators and their modelling techniques a also part of this course. Introduction to microfabrication: History of mems development, characteristics mems-miniaturization - micro electronics integration, devices: sensors and actuators. Overview of microfabrication: Overview of microfabrication, frequently us microfabrication processes, microelectronics fabrication process flow, packaging a integration. Thermal sensing and actuation: Introduction: thermal sensors and actuators, therr couples, thermal resistors, applications. Electrical and mechanical concepts: Overview, conductivity of semiconductors, crys planes and orientations, stress and strain, torsional deflections, dynamic systems, reson frequency. Electrostatic sensing and actuation: Parallel plate capacitors and application piezoresistive sensors. Piezoresistive sensors. Piezoelectric sensing and actuation: Introduction, properties of piezoelectric materia applications. Magnetic actuation: Essential concepts and principles, fabrication of micro magne components, case study of mems magnetic actuators. Bulk micromachining and silicon anisotropic etching Introduction, dry / wet etching and deep reactive ion etching (drie), gas-phase etchants. Surface micromachining: Basic processes, structural and sacrificial material, stiction/a stiction methods. 			
Recommend Books	 ed Chang Liu, Foundation of MEMS, Latest edition Marc J. Madou, Fundamentals of microfabrication: The science of miniaturization, Latest edition. 		
Approval	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018		

Title of Subject Disciplines Semester Effective Credit hours Minimum Conta Assessment Marks	 : LASER MATERIAL PROCESSING [MTS-627] : M.E. Mechatronic Engineering : 1st : 19 ME-MTS Batch & Onwards : 03 : 03 : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100
Aim :	This course is designed to study the laser technology and the physics in laser-based manufacturing and materials processing techniques.
Objectives :	 To apply the different analytical and numerical models that capture the physics in material processing techniques. On completion of this course student will be able: To select the appropriate laser techniques for manufacturing and materials process. To improve the metal properties by applying proper laser techniques.
Contents :	 Introduction to laser processing, challenges for the future and its industrial applications, Interaction of optical energy with matter, Characteristics of optical energy, Range of current industrial applications and Future trends, The challenges ahead for laser macro, micro, and nano manufacturing. Laser cutting and Machining Principles of fusion laser cutting, laser cutting of difficult materials and its improvement, Laser-assisted glass cleaving, The multiple laser system, Numerical simulation, Numerical results and discussions, Crack propagation in laser cleaving. Laser machining of silicon, Conventional laser dicing of silicon wafer, Laser-silicon interaction, Laser machining of carbon fibre-reinforced plastic composites. Laser welding Laser spot welding results, Continuous wave (CW) laser welding, formation mechanisms and suppression procedures of welding defects, Keyhole formation and dynamics, Melt pool dynamics, Micro welding of copper and aluminium, Enhancing laser welding capabilities. Laser surface engineering Laser annealing and hardening, Pulsed laser annealing technology for nanoscale fabrication, Surface treatment, coating and materials deposition using lasers, Micro- and nano-parts generated by laser-based Solid Freeform Fabrication, Laser-assisted additive fabrication of micro-sized coatings,
Recommended Books :	 J. Lawrence, J. Pou, D. K. Y. Low and E. Toyserkani, "Advances in laser materials processing", Latest Edition. Esther Titilayo Akinlabi, Rasheedat Modupe Mahamood, Stephen Akinwale Akinlabi, "Advanced Manufacturing Techniques Using Laser Material Processing", Latest Edition. John C. Ion eur. ing., ceng, fimmm, Laser Processing of Engineering Materials Principles, Procedure and Industrial Application, Latest Edition. Eliiah Kannatay Asihu, In. Prinzinlag, of Laser Materials Processing, Latest

• Elijah Kannatey-Asibu, Jr., Principles of Laser Materials Processing, Latest

Edition.

• John Michael Dowden, The Mathematics of Thermal Modeling: An Introduction to the Theory of Laser Material Processing, Latest Edition.

Approval	:	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
		Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
		Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subj	ect	: RAPID PROTOTYPING, TOOLING AND AUTOMATION			
Disciplines		ME Mechatronic Engi	neering		
Semester		· 1 st			
Effective		19 ME-MTS Batch & C	nwards		
Credit hours		13 MIL-MITS Daten & C	niwards		
Minimum C	ontact hours	42			
Assessment	ontact nours	10% Sessional Work	30% Mid Semester	Examinations 60%	
11550551110110		Final Examinations.		Enalimations, 0070	
Marks		100			
Aim	This course is des	gned to study the princip	ples and application a	reas in Rapid Response	
:	Manufacturing Te	chniques.			
Objectives	1. To apply RRN	IT concepts in support o	f developing new proc	lucts.	
:	2. To evaluate the	e capabilities of various	rapid prototyping (RP) processes,	
	3. To develop	techniques for accel	erating the product	t and manufacturing	
a	development	process.			
Contents	Introduction				
:	Product Prototypi	ig, its Impact and Produ	ct Developments, Phy	sical Prototype Design	
	Procedure, Proto	type Planning and I	Management, Projec	t Vision in Project	
	Management, Pro	ject Risk Management	, Product and Proto	type Cost Estimation,	
	Prototype Design	Methods, Design Tools,	Paper Prototyping.		
	Modelling and V	ng Data Formats, Modelling of Physical Systems, Product Modelling,			
	Rapid Prototyping				
	Virtual Reality an	d Virtual Prototyping, P	rototyping Materials,	Modelling of Material	
	Properties, Mode	lling and Design of	Materials and Stru	ctures, Direct Digital	
	Prototyping and N	Manufacturing			
	Rapid tooling tec	hniques,		D 100T 1	
	new materials dev	elopment, Bi-metallic p	arts, Re-manufacturin	g, Rapid Soft Tooling,	
	Rapid Bridge Too	ling, Rapid Production	Tooling, Composite	ooling, Rapid Tooling	
	in Investment-Cas	ting Applications			
	Rapid Prototypin	g Processes			
	Liquid-Based Rap	pid Prototyping Processes, Solid-Based Rapid Prototyping, Processes,			
	Powder-Based Ka	a Prototyping Processe	·S.		
	Prototyping of A	Itomated Systems	1 4 1' 4'		
	Actuators, Sense	rs, Controller and A	nalyzer, Application	is and Selection of	
	Mechanisms, Usi	g Prototypes for Produc	ct Assessment, Orthog	gonal Arrays, Analysis	
	of variance, AN	JVA, Quality Characte	eristic, Optimization	of a Prototype Laser	
D	Deposition Proces	S. 11 D. 1 D		A 11 T	
Recommend	$\mathbf{Ied} \bullet \mathbf{L}$. \mathbf{L} . Fa	ulkner, Rapid Prototyp	oing and Engineering	g Applications, Latest	
BOOKS	Edition.				
	• Chua C. K., Leong K. F., Lim C. S., Rapid Prototyping: Principles and				
ApplicatAdedejiPeter D.		itions, Latest Edition.			
		B. Badiru, Additive Manu	ufacturing, Latest Edit	10n.	
		. Hilton, Paul F. Jacobs, Rapid Tooling Technologies and Industrial			
	Applicati	ons, Latest Edition.			
Approval	: Board of Studi	S	Res. No. 3.1	Dated: 27-08-2018	
	Advanced Stud	ies and Kesearch Board	Kes. No.151.18(a)	Dated: 04-09-2018	

Academic Council

Res. No. 93.7(C) Dated: 17-09-2018

Title of Subject Disciplines Semester	: DIGITAL CONTROL SYSTEMS [MTS-629] : M.E. Mechatronic Engineering : 3 rd				
Effective Credit hours	: 19 ME-MTS Batch & Onwards : 03 : 42				
Assessment Marks	: 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100				
Aim :	Have in-depth knowledge and critical understanding of the theory and principle of digital control systems and their applications				
Objectives :	 Analyze the behaviour of a discrete system in time domain and in frequency domain Design and synthesize controllers that will be implemented using digital hardware. Apply digital control systems' principles and techniques to discrete or antipuers time systems. 				
Contents :	 3. Apply digital control systems' principles and techniques to discrete or continuous time systems Introduction Digital Control Systems, Quantizing and Quantization Error, Data Acquisition, Conversion and Distribution System z-Transform z-transforms of Elementary Functions, Properties and Theorems of z-transform, Inverse z-transform, z-Plane Analysis of Discrete Time Control Systems, Impulse Sampling and Data Hold, Obtaining z-Transform by Convolution Integral, Reconstruction of Original Signal from Sampled Signals, Pulse Transfer Function, Realization of Digital Controllers and Digital Filters Design by Conventional Methods Mapping between s-Plane and z-Plane, Stability Analysis of Closed Loop System in z-plane, Transient and Steady-State Response Analysis, Design Based on Frequency Response State-Space Analysis State-Space Representation of Discrete Time Systems, Pulse Transfer Function Matrix, Lyapunov Stability Analysis Pole Placement and Observer Design Controllability and Observability, Design via Pole Placement, State Observers, Servo Systems 				
Recommended Books :	 Steady-State Quadratic Optimal Contro Katsuhiko Ogata, Discrete-Time Control Systems, Latest edition. Gene F. Franklin, J. David Powell, Michael L. Workman, Digital Control of Dynamic Systems, Latest edition. M. Sami Fadali Antonio Visioli, Digital Control Engineering, Latest edition. Landau, Ioan Doré, Zito, Gianluca, Digital Control Systems: Design, Identification and Implementation, Latest edition. 				
Approval :	Board of StudiesRes. No. 3.1Dated: 27-08-2018Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018				

Academic Council

Res. No. 93.7(C) Dated: 17-09-2018

Title of Subject	: FILTERING AND TRACKING [MTS-630]				
Disciplines	: M.E. Mechatronic Engineering				
Semester	: 3 rd				
Effective	: 19 ME-MTS Batch & Onwards				
Credit hours	: 03				
Minimum Conta	act hours : 42				
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60%				
	Final Examinations.				
Marks	: 100				
Aim :	To impart the knowledge to solve linear and nonlinear filtering problem and understand the optimal solution to the filtering problem				
•	understand the optimital solution to the intering problem				
Objectives :	1. Understand all the main filter algorithms such that they know when and how to apply them				
	2. Perform model selection in time varying settings				
	3. Design suitable measurement and motion models when given a new real-				
C ((((((((((world problem				
:	Systems, Models For Inertial Navigation Systems, Accuracy of GPS positioning, state-space models for GPS, GPS navigation with IMM estimator, integrated				
	navigation				
Constant velocity models: Optimal/conceptual solutions to general filte problems					
	Extended and Unscented Kalman filters: Approximation of the Nonlinear Estimation Problem stability				
	MMSE and LMMSE estimators: Least Squares and Minimum Mean Square				
	Error Estimation, MMSE vs. MAP Estimator in Gaussian Noise. Linear MMSE				
	Estimation for Vector Random Variables.				
	Model selection in time varying settings: Selection of noise levels, IMM				
	algorithm, choice of the transition probabilities.				
	Interacting Multiple Model filters: Complexity reduction using merging and				
pruning					
Recommended	• Branko Ristic, Sanjeev Arulampalam, Neil Gordon, Beyond the Kalman				
·	• Vackey Day Shalam V. Dang Li, Thissalingam Kiruhansian Estimation				
• Yaakov Bar-Shalom, X. Kong Li, Iniagalingam Kirubarajan,					
	Fredrik Gustafsson Statistical Sensor Fusion Latest edition				
 Phil Kim Lynn Hub Kalman Filter for Reginners · with M 					
	Examples, Latest edition.				
	1 -,				
Approval :	Board of Studies Res. No. 3.1 Dated: 27-08-2018				
	Advanced Studies and Research Board Res. No.151.18(a) Dated: 04-09-2018				
	Academic Council Res. No. 93.7(C) Dated: 17-09-2018				

Title of Subject Disciplines Semester Effective Credit hours Minimum Contact Assessment Marks	 PARADIGMS OF ARTIFICIAL INTELLIGENCE [MTS-631] M.E. Mechatronic Engineering 3rd 19 ME-MTS Batch & Onwards 03 hours 42 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. 100
Aim	To develop the concepts of artificial intelligence, intelligent machines and differences between natural and artificial intelligence.
Objectives :	 To understand the fundamental concepts of neural networks, neuro- modelling, several neural network paradigms and its applications. To understand the concepts of fuzzy sets, fuzzy logic control and its applications. To be able to create software for intelligent agents using these techniques.
	Agents and Environments, Good Behaviour, Nature of Environments, Structure of Agents Problem Solving: Solving Problems by Searching, Problem Solving Agents, Uninformed Search Strategies, Informed (Heuristics) Search Strategies, Heuristic Functions Adversarial Search: Optimal Decisions in Games, Alpha-Beta Pruning, Stochastic Games, Partially Observable Games, Knowledge, Reasoning and Planning, Logical Agents Knowledge-Based Agents, Propositional Logic, Agents Based on Propositional Logic First-Order Logic and Inference: Syntax and Semantics of First-Order Logic, Knowledge Engineering in First-Order Logic, Unification and Lifting, Forward and Backward Chaining Classical Planning: Algorithms for Planning as State-Space Search, Planning Graphs Knowledge Representation: Ontological Engineering, Categories and Objects, Events Uncertain Knowledge and Reasoning: Probabilistic Reasoning, Semantics of Bayesian Networks, Efficient Representation of Conditional Distribution, Exact and Approximate Inference in Bayesian Networks Probabilistic Reasonig over Time Inference in Temporal Models, Hidden Markov Models, Kalman Filters, Dynamic Bayesian Networks Learning: Supervised Learning, Learning Decision Trees, Evaluating and Choosing Best Hypothesis, Regression and Classification with Linear Models, Artificial Neural Networks, Support Vector Machines Reinforcement Learning: Passive and Active Reinforcement Learning, Policy Search, Applications of Reinforcement Learning.
	Artificial Neural Networks, Support Vector Machines Reinforcement Learning: Passive and Active Reinforcement Learning, Policy Search, Applications of Reinforcement Learning Communication Perceiving and Acting: Natural Language Processing, Language Models, Text Classification, Information Retrieval, Information Extraction

Recommended Books :	 Perception: Image Formation, Object Recognition from Structural Informat Robotics: Robot Hardware, Robotic Uncertain Movements, Robotic Software ging and pruning Tom M. Mitchell, Machine Learn Laurene Fausett, Fundamentat Algorithms and Applications, La Jun Yan, Michael Ryan and edition. Achim Hoffman, Paradigms of A Computational Analysis, Latest edition 	et Recognition by Ap- tion Perception, Planning ware Architecture ning, Latest edition. Is of Neural Net test edition. James Power, Using Artificial Intelligence: edition	pearance, Object to Move, Planning works: Architectures, g Fuzzy Logic, Latest A Methodological and
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject Disciplines Semester Effective Credit hours Minimum Conta Assessment Marks	: REAL TIME SYSTEMS [MTS-632] : M.E. Mechatronic Engineering : 3 rd : 19 ME-MTS Batch & Onwards : 03 : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100
Aim :	The aim of the course is to bring students up to a point that they understand the motivation, theoretical background, and some of the work that has been done in the field of real-time systems.
Objectives :	 To apply advanced techniques, such as rate monotonic analysis, to practical problems without any further study. To develop the concepts of scheduling of tasks.
·	 Introduction real-time systems Overview ontrol systems, real-time systems and embedded systems, classification of real-time systems. Typical real time applications: Overview of real-time applications, digital controls, high level controls, signal processing, other real time applications. Hard versus soft real time applications: Jobs and processors, release times, deadlines and timing constraints, hard and soft timing constraints, hard real time systems, soft real time systems. Uniprocessor scheduling (static/dynamic/state priority schedulers, Dynamic-Priority Schedulers, Comparing Fixed and Dynamic-Priority Schedulers, Dynamic-Priority Schedulers, Comparing Fixed and Dynamic-Priority Schedulers, Scheduling Nonpreemptable Taskes: Scheduling nonpreemptable sporadic tasks, Nonpreemptable tasks with precedence constraints, Periodic tasks with critical sections Clock driven scheduling Notations and assumptions, static and timer driven scheduler, general structure of cyclic schedules, scheduling of periodic tasks Static assumption, fixed-priority versus dynamic-priority algorithms, schedulability test for fixed-priority tasks with short and arbitrary response times, practical factors, pre emptive/non-pre emptive systems. Resource sharing: Assumptions on resources and their usage, Effects of resource contention and resource access control, Basic Priority-ciling protocol, Basic Priority-Ciling protocol, Stack based, priority ceiling protocol, use of priority-Ciling protocol in Dynamic-Priority systems, Preemption ceiling protocol, Controlling accesses to Multiple-Unit Resources, Controlling concurrent accesses to data objects Multiprocessor and distributed systems: Model of Multiprocessor and distributed systems, Task assignment, Multiprocessor priority-ceiling protocol, Elements of scheduling algorithms for end-to-end periodic tasks, Schedulability of fixed priority end to end periodic tasks in Heterogeneous systems, Predictabili
	41

Recommended Books :	 Jane Liu, Real Time Systems, Lates Phillip A. Laplante, Real-time syste Alan Burns and Andy Wellin Languages, Latest edition Alan C. Shaw, Real-Time Systems a 	st edition. ems design and analys gs,Real-Time Syste and Software , Latest	sis, Latest edition. ems and Programming edition.
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject Disciplines Semester Effective Credit hours Minimum Contact hours Assessment Marks		 PROGRAMMING FOR EMBEDDED SYSTEMS [MTS-601] M.E. Mechatronic Engineering 3rd 19 ME-MTS Batch & Onwards 03 42 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. 100 			
Aim	Develop embe	dded systems based on re	al time operating sys	tems.	
: Objectives : Contents	 Develop embedded software of high quality using high level programming C. Develop software on hardware platforms taking limitations such as memory processor capacity, and bandwidth into account. Develop reliable software taking fault tolerance and recovery into considerat Develop correct and efficient software using fault detection and other test syst Introduction to Hardware 				
	 Embedded Design Example, C Language, Hardware Basics, Processor and Periphera Communication Simple Embedded Program Hello, World!, Blinking LED Program, Infinite Loop Compiling, Linking, Locating and Debugging: Building the Blinking LED Program, Remote Debuggers, Emulators, Memory, Type of Memory, Direct Memory Access, Memory Testing, Validating Memory Contents, Using Flash Memory Peripherals: Control and Status Registers, Device Driver Philosophy and Design Interrupts: Interrupt Map, Interrupt Service Routine Operating Systems: Scheduler, Task Synchronization, Message Passing, Interrupt Handling Embedded Linux Examples: Accessing Hardware in Linux, Task Mechanics, Mute Task Synchronization, Semaphore Task Synchronization Optimization Techniques: Increasing Code Efficiency, Decreasing Code Size, Reducing Memory Usage, Power Saving Techniques 				
Recommended Books :	 ded Michael Barr, Anthony Massa, Programming Embedded Systems: With C a GNU Development Tools, Latest edition. Mark Siegesmund, Embedded C Programming: Techniques and Applications of and PIC MCUS, Latest edition. Jack Ganssle, The Art of Programming Embedded Systems, Latest edition.Al C. Shaw, Real-Time Systems and Software, Latest edition. 				
Approval :	Board of Studie Advanced Studie Academic Cou	es ies and Research Board ncil	Res. No. 3.1 Res. No.151.18(a) Res. No. 93.7(C)	Dated: 27-08-2018 Dated: 04-09-2018 Dated: 17-09-2018	

Title of Subject		: ARTIFICIAL NEURAL NETWORKS [MTS-634]				
Disciplines		: M.E. Mechatronic Engineering				
Semester		: 3 rd				
Effective		: 19 ME-MTS Batch &	z Onwards			
Credit hours		: 03				
Minimum Cont	act hours	: 42				
Assessment		: 10% Sessional Work, 30% Mid Semester Examinations, 60%				
		Final Examinations.				
Marks		: 100				
Aim:	Implement classificatio	ANN algorithms to on as well as process mo	o achieve signal pr delling	ocessing, optimisation,		
Objectives:	1. explain Hopfiel	the function of artificia d, RBF and SOM	l neural networks (ANN	I) of the type Back-prop,		
	2. explain	the difference between	supervised and unsuperv	vised learning		
	3. account brough	for assumptions and derivations behind the ANN algorithms that are				
	4. give ex	amples of design and implementation for small problems				
Contents :	Introduction	Introduction to Neural Networks: Perceptrons and the LMS Algorithm,				
	Backpropag	Backpropagation Learning Visually-Guided Robot Control: Overfitting, Cross-Validation, and Early				
	Visually-G					
	Stopping	current Networks: Language Processing Models, Pattern Classification,				
	Simple Ree					
	Radial Basi	s Functions, The EM (E	xpectation-Maximizatio	n) Algorithm		
	Neural Net	tworks for Control: Sug	pport Vector Machines, '	Time Series Prediction,		
	Shared We	ight Networks				
	Competitiv	Competitive Learning and Kohonen Nets: Hebbian Learning and Principal				
	Components Analysis, Hopfield Nets and Boltzmann Machines, Mean Field					
	Approxima	Approximation, Helmholtz Machines; Minimum Description Length				
	Bayesian	Networks: Computation	onal Learning Theory,	Connectionist Symbol		
	Processing, Reinforcement Learning, Neurophysiology for Computer Scientists					
Recommended	• John H	ertz, Anders Krogh, Ri	chard G. Palmer, Introc	luction to the Theory of		
Books : Neural		Computation, Latest edi	tion.	n Latast adition		
	• Bisnop	, C. IVI., Incural Inclword				
Approval :	Board of Stu	dies	Res. No. 3.1	Dated: 27-08-2018		
	Advanced St	udies and Research Boar	rd Res. No.151.18(a)	Dated: 04-09-2018		
	Academic Co	ouncil	Res. No. 93.7(C)	Dated: 17-09-2018		

Title of Subject Disciplines Semester Effective Credit hours Minimum Conta Assessment Marks	: OPTOMECHATRONIC SYSTEMS [MTS-614] : M.E. Mechatronic Engineering : 3 rd : 19 ME-MTS Batch & Onwards : 03 act hours : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100
Aim	To develop the advanced concepts of Optomechatronic systems.
Objectives :	 To understand the importance of Mechatronics elements in the field of Optomechatronic system. To familiarize the students with various micro-fabrication techniques in the field of Optomechatronics. To familiarize the students with various software used in the design and simulation of MEMS/MOEMS.implement ANN algorithms to achieve signal processing, optimisation, classification as well as process modelling
:	 b) pointeriatione remotegy Historical Background of Optomechatronic Technology, Optomechatronics: Definition and Fundamental Concepts Fundamental Functions of Optomechatronic Systems Principles of Optics a. Reflection and Refraction b. Lenses, Multiple Lens Systems, Aperture Stops and Pupils c. Optical Aberrations d. Polarization, Coherence, Interference and Diffraction e. Optical Fiber Transmission f. Gaussian Beam Optics Mechatronics Elements of Optomechatronic System a. Optomechatronic Actuation b. Optomechatronic Actuation b. Optomechatronic Sensing c. Optical Scanning, Optical Switching d. Zoom Control, Visual Auto focusing e. Optical Signal Transmission and Display f. Dynamic Systems and Control Visual (Optical) Information Feedback Control Micro-fabrication Techniques a. Bulk micromachining b. Surface micromachining CMOS-compatible MEMS and MOEMS Compound-semiconductor-based MEMS and MOEMS Technologies for continuous surface profiles Optomechatronic Systems in Practice, Adaptive Optics: Adaptive Optics Imaging Systems, Beam Propagation Systems, MEMS/MOEMS CAD and Simulation, FEM Simulation using COMSOL Multiphysics, Micro-fabrication, Design and Simulation
	Laser Printers, Optical Storage Disk, Atomic Force Microscope, Confocal Scanning Microscope, Projection Television and Visual Tracking System,

Recommended Books :	 Hyungsuck Cho, Optomechatron Engineering, Latest edition M. Edward Motamedi, MOEMS: Medition Marc J Madou, Fundamentals of Medition. Mark A. Mentzer, Applied Optics Moems, and Biotechnology, Latest 	ic: Fusion of Opt icro-opto-electro-me Aicrofabrication and Fundamentals and De Edition.	ical and Mechatronics chanical Systems, Latest Nanotechnology, Latest evice Applications Nano,
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject: FUZZY LOGIC HYBRID SYSTEMS [MTS-636]					
Disciplines	: M.E. Mechatronic Engineering				
Semestre	$: 2^{nd}$				
Effective	: 19 ME-MTS Batch & Onwards				
Credit hours	: 03				
Minimum Cont	ct hours : 42				
Assessment	: 10% Sessional Work, 30% Mid Semester Examinations, 60%				
Marks	Final Examinations. : 100				
Aim :	The course covers the main aspects of fuzzy systems together with their applications.				
Objectives :	 To teach of hybrid systems (neuro-fuzzy, and fuzzy-genetic), hybrid intelligent systems and examples to problem solving using hybrid intelligent systems. To apply various hybrid system to intelligent systems. 				
Contents :	Introduction to fuzzy logic Case for Imprecision, Utility of Fuzzy Systems, Limitations of Fuzzy Systems Fuzzy logic applications				
	Aerospace, Automotive, Defence, Finance, Manufacturing				
	Introduction to fuzzy sets and fuzzy operations				
	Properties of Fuzzy Sets, Noninteractive Fuzzy Sets, Fuzzy Set Operations				
	Fuzzy logic control design				
	Rule-Base, Fuzzification, The Inference Mechanism, Defuzzification				
	Neuro-fuzzy systems				
	Adaptive Neuro-Fuzzy Inference System, Simulation				
	Fuzzy-Genetic systems				
	Genetic Algorithm and Fuzzy Fitness Finder				
	Application of fuzzy logic to robots and intelligent machines and hybrid fuzzy				
Recommended Books :	 J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Latest edition. 				
	• D. Nauck, F. Klawonn, R. Kruse, Wiley, Chichester, Foundations on Neuro- Fuzzy Systems, Latest edition.				
	• T.J. Ross, Fuzzy Logic with Engineering Applications, Latest edition.				
	K.M. Passino, S.Yurkovich, Fuzzy Control, Latest edition.				
	 Lin, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism, Latest edition. G.J. Klir and T.A. Folger, Fuzzy Sets, Uncertainty, and Information, Latest edition. 				
Approval :	Board of Studies Res. No. 3.1 Dated: 27-08-2018				
	Advanced Studies and Research BoardRes. No.151.18(a)Dated: 04-09-2018Academic CouncilRes. No. 93.7(C)Dated: 17-09-2018				

Title of Subject: NATURAL LANGUAGE PROCESSING [MTS-637]			TS-637]	
Disciplines		A.E. Mechatronic Engin	eering	
Semester	:3	ra		
Effective	:1	9 ME-MTS Batch & Or	nwards	
Credit hours	:(13		
Minimum Co	ontact hours : 2	2		
Assessment	:	10% Sessional Work,	30% Mid Semester	Examinations, 60%
	Fi	nal Examinations.		
Marks	:	.00		
Aim	To make models to	understand interpret on	d manipulate human l	anguaga
Allii. Objectives:	1 To fill the gap h	etween human commur	vication and computer	understanding
Objectives.	2 To use techniqu	les for interpreting free 1	ext to analyse	understanding.
Contents	Introduction	is for interpreting free t	ext to analyse.	
·	Regular Expression	s Text Normalization M	Ainimum Edit Distan	Ce la
•	N-gram Language	models		
	N-grams Evaluation	a Language Models, Ge	neralization and Zero	s Kneser-Nev Smoothing
	Naive Bayes and S	entiment Classification		s, Kneser Wey Shioothing
	Naive Bayes Class	sifiers Ontimizing for	Sentiment Analysis	Naive Bayes for other text
	classification tasks	Test sets and Cross-val	idation	Traite Dayes for other tent
	Logistic Regressio	n	uution,	
	Classification: the s	igmoid. The cross-entro	pv loss function. Gra	dient Descent, Regularization,
	Vector Semantics	8)	15	, ,
	Lexical and Vector	Semantics, Cosine for	measuring similarity	, TF-IDF: Weighing terms in
	the vector, Bias and	Embeddings	6 ,	
	Neural Networks a	and Neural Language N	Models	
	The XOR problem,	Feed-Forward Neural N	letworks, Neural Lang	guage Models
	Part-of-Speech Ta	gging		
	Penn Treebank Pa	rt-of-Speech Tagset, H	MM Part-of-Speech	Tagging, Maximum Entropy
	Markov Models, Bi	directionality		
	Syntactic Parsing			
	Ambiguity, CKY P	arsing, Partial Parsing		
	Statistical Parsing			
Probabilistic Context-Free Grammars, Probabilistic CKY Parsing of PCFGs, Ways to				ng of PCFGs, Ways to Learn
	PCFG Rule Probab	ilities, Probabilistic Lex	cicalized CFGs, Proba	abilistic CCG Parsing, Human
	Parsing			
	Information Extra	ction		
	Named Entity Reco	gnition, Relation Extrac	tion, Extracting Time	s, Template Filling
	Dialog Systems an	d Chatbots	4	
D	Knowledge-based (Juestion Answering, Ch	atbots, Frame Based I	Dialog Agents
Recommend	ed • Chris Man	aing and Hinrich Schü	itze, Foundations of	Statistical Natural Language
BOOKS	Processing,	Latest edition.		
	Brian Roar	k, Richard Sproat, Com	putational Approach	es to Morphology and Syntax,
	Latest editi	on.		
	• Daniel Jur	atsky and James H.	Martin, An Introdu	uction to Natural Language
	Processing,	Computational Linguis	tics, and Speech Reco	ognition, Latest edition.
Approval	· Board of Studios		Res No 21	Dated: 27-08-2018
лррготаг	Advanced Studie	es and Research Roard	Res No 151 18(2)	Dated: 04_09_2018
	A cademic Coun	s and Research Doald	Res. No. 03. $7(C)$	Dated: 17-09-2018
		/11	100.100.75.7(0)	Dated. 17-07-2010

Title of Subject Disciplines Semester Effective Credit hours Minimum Contac Assessment Marks	 : SMART MATERIALS AND STRUCTURES [MTS-638] : M.E. Mechatronic Engineering : 1st : 19 ME-MTS Batch & Onwards : 03 : 42 : 10% Sessional Work, 30% Mid Semester Examinations, 60% Final Examinations. : 100
Aim :	To provide comprehensive knowledge and modelling methods for various smart materials and structures.
Objectives :	 To provide comprehensive knowledge of various smart materials. To present engineering applications of smart materials and structures along with modelling techniques.
Contents :	 Introduction: Smart materials, smart structures, dependence of properties on structure, recent applications of smart materials, smart material properties Piezoelectric Materials: Electromechanical coupling in piezoelectric materials, constitutive equations for linear piezoelectric material, common operating modes of a piezoelectric transducer, dynamic force and motion sensing, operating mode of a piezoelectric device, Derivation of the piezoelectric constitutive relationships, approximation methods for static analysis Of piezolectric material systems, piezoelectric beams, piezoelectric material systems, piezoelectric beams, piezoelectric material systems, piezoelectric plates, electrostrictive materials Shape Memory Materials: Properties of Thermally Activated Shape Memory Materials, Physical Basis for Shape Memory Properties, Constitutive Modeling, Multivariant Constitutive Model, Actuation Models of Shape Memory Alloys, Electrical Activation of Shape Memory Alloys, Dynamic Modeling of Shape Memory Alloys for Electrical Actuation Magnetostrictive Materials: Basics of Magnetostriction, Magnetostrictive Materials Applications, modelling of magnetostrictive material Piezoelectric Electrorheological material properties, classification, applications, ER fluid systems Active polymers: Fundamental Properties of Polymers, Dielectric Elastomers, Conducting Polymer Actuators, Ionomeric Polymer Transducers, Input–Output Transducer Models, Actuator and Sensor Equations, Material Properties of Ionomeric Polymer Transducers, Input–Output Transducer Models, Actuator and Sensor Equations, Material Properties of Ionomeric Polymer Transducers Design, modeling and applications of smart materials systems Motion Control Applications of smart materials, prequency-Leveraged Piezoelectric Actuators, Position Control O Sing Ionomers, Passive and Semiactive Damping: Passive Damping, Piezoelectric Shunts, Multimode Shunt

Shape Memory Alloy Wires, Parametric Study of Shape Memory Alloy Passive Damping Active Vibration Control: Second-Order Models for Vibration Control, Examples, Dynamic Output Feedback, Self-Sensing Actuation, Distributed Sensing, State-Space Control Methodologies

Recommer Books	nded :	 M.V. Gandhi and B.S. T Donald J.Leo, Engineer M. Schwartz , Smart Ma 	Thompson , Smart materials a ing Analysis of Smart Materi aterials, Latest edition	nd structures, Latest edition. al Systems, Latest edition
Approval		Board of Studies	Res No 31	Dated: 27-08-2018

Approval	:	Board of Studies	Res. No. 3.1	Dated: 27-08-2018
		Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018
		Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018

Title of Subject: PATTERN RECOGNITION AND ANALYSIS [MTS-639]					
Disciplines					
Semester	: 3 rd				
Effective	: 19 ME-MTS Batch & C	Dnwards			
Credit hours	: 03				
Minimum Cont	act hours : 42				
Assessment	: 10% Sessional Work,	30% Mid Semester	Examinations, 60%		
	Final Examinations.				
Marks	: 100				
Aim	The aim of this subject is to teach m	ost widely used tech	niques and methodologies for		
:	pattern recognition tasks.				
Objectives	1. To provide knowledge of generic	pattern recognition m	ethods.		
:	2. To impart knowledge of advance	d techniques pattern r	ecognition methods.		
Contents	Introduction to Pattern Recognition	: Feature Detection,	Classification		
:	Review of Probability Theory:, Con	ditional Probability an	nd Bayes Rule		
	Random Vectors:, Expectation, Correlation, Covariance, Review of Linear Algebra,				
	Linear Transformations				
	Decision Theory: ROC Curves,	Likelihood Ratio 7	Test, Linear and Quadratic		
	Discriminants, Fisher Discriminant				
	Sufficient Statistics: Coping with Missing or Noisy Features, Template-based Recognition, Feature Extraction, Eigenvector and Multilinear Analysis				
	Training Methods: Maximum Like	lihood and Bayesian	Parameter Estimation, Linear		
	Discriminant/Perceptron Learning, C	ptimization by Grad	ient Descent, Support Vector		
	Wachings K Noarost Noighbor Classificati	Non noromotri	Classification Dansity		
	Estimation, Parzen Estimation	JII. Non-parametric	Classification, Defisity		
	Unsupervised Learning: Clustering,	Vector Quantization,	K-means, Mixture Modeling,		
	Expectation-Maximization, Hidden 1	Markov Models, Vite	erbi Algorithm, Baum-Welch		
	Algorithm.				
	Linear Dynamical Systems: Kalma	an Filtering, Bayesia	n Networks, Decision Trees,		
	Multi-layer, Perceptrons, Reinforcement Learning with Human Interaction, Genetic				
	Algorithms, Combination of Multiple	Classifiers "Committ	ee Machines		
Recommended • R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification., Latest edition					
Books :	• T. Hastie et al., The Elements of Statistical Learning., Latest edition.				
	• K. Murphy, Machine Learning: A	probabilistic Perspec	tive, Latest edition.		
	• Theodoridis, K. Koutroumbas, Pa	ttern recognition, Late	est edition.		
Approval :	Board of Studies	Res. No. 3.1	Dated: 27-08-2018		
	Advanced Studies and Research Board	Res. No.151.18(a)	Dated: 04-09-2018		
	Academic Council	Res. No. 93.7(C)	Dated: 17-09-2018		

Title of Subject		: ADVA	NCED ACTUA	FORS [MTS-641]		
Disciplines		: M.E. M	echatronic Engi	gineering		
Semester		: 1 st	:1 st			
Effective		: 19 ME-	: 19 ME-MTS Batch & Onwards			
Credit hours		: 03				
Minimum Conta	act hours	: 42				
Assessment		: 10% S	essional Work.	30% Mid Semester	Examinations, 60%	
		Final E	aminations.		,,	
Marks		: 100				
Aim	To impart 1	the knowle	dge of working	principles and perfor	mance of advanced actuators	
:	such as pie actuators.	ezoelectric	, electrostatic, f	luid power, shape m	emory alloy, soft and micro	
Objectives	At the end	of this cou	rse, students wil	l be able to:		
:	1. Describ	e control 1	nethods and app	lications of advanced	actuators.	
	2. Design	advanced	mechanical sys	tems with wide varie	ty of specifications selecting	
Contents	Fundament	als of Adva	nced Actuators			
:	Transducing	Transducing Materials as a basis of Actuator Design, Role of Actuator in Control System,				
	Electrostatic Actuators					
	Pull-In Phenomena, Constant Charge Mode of Electrostatic Force, Constant Voltage Mode of					
	Electrostatic motion), Z-d	Force, X-	direction motion tion of Comb Driv	of Comb Drive Device ve Device	e, Force and Deflection (lateral	
	Fluid Power	r Actuators				
	Fundamenta Linear and R	l Principles lotary Actu	, Types of Cont ators, Sequencing	rol Valves, Speed Con Applications	itrol, Actuator Synchronization,	
	Shape Mem Shape Mem	ory Alloy A ory Effect, 1	Actuators Pseudoelasticity in	n SMA, Design of Shap	e Memory Actuators, Control of	
	SMAs, Figu	res of Merit	of SMA			
	Piezoelectric	ty and Pie	zoelectric Materi	als Constitutive Fauat	ions of Piezoelectric Materials	
Resonant Piezoelectric actuators Non-Resonant Piezoelectric actuators Contro					actuators. Control Aspects of	
Piezoelectric Motors						
	Soft actuato	ors				
	Micro-Actu	ators				
	Biological in Inputs, Char	nspiration of acteristics of a	of Micro-Actuator f Mechanical Mic	rs, Mechanical Micro-A ro-Actuators, Electrosta	Actuators with Different Energy atic Comb-Drive	
Recommended	• Smart A	• Smart Actuator and Sensor Technologies: Design, Modeling, Fabrication, and Control for				
Books :	Mechatronic Systems by Kam K Leang, Kwang J Kim					
	Soft Actuators: Materials, Modeling, Applications, and Future Perspectives edited by Kinji					
	Asaka, Hidenori Ukuzaki					
	• Emergir	ig Actuator	Technologies: A	Micromechatronic Appr	oach by By Jose L. Pons.	
Approval :	Board of Stu	dies		Res. No. 3.1	Dated: 27-08-2018	
11	Advanced St	udies and 1	Research Board	Res. No.151.18(a)	Dated: 04-09-2018	
	Academic Co	ouncil		Res. No. 93.7(C)	Dated: 17-09-2018	